Linear trend of resting-state fMRI time series
نویسندگان
چکیده
Although linear trend removing has often been implemented as a routine preprocessing step in resting-state functional magnetic resonance imaging (RS-fMRI) data analysis, the spatial distribution of the magnitude of linear trend is still unclear. Further, it is interesting whether there will be any difference of the linear trend magnitude between different resting-states. For the first aim, we analyzed 5 RS-fMRI datasets from 5 different scanners (namely Beijing-Simens-3T, Cambridge-Siemens3T, CCBD-GE750-3T, Milwaukee-GE-3T, and Oulu-GE-1.5T). One-sample t-tests on the regression coefficient (i.e., the magnitude of linear trend) were performed for each datasets. For the second aim, we used 2 datasets in each of which different states were compared, one containing eyes-open resting-state (EO-RS) vs. eyes-closed resting-state (EC-RS) and the other containing two steady-state tasks, i.e., real-time finger force feedback (RT-FFF) and sham finger force feedback (S-FFF) tasks. Paired t-tests were performed between EO-RS and EC-RS, and between RT-FFF and S-FFF. One-sample t-tests showed that the spatial pattern of linear trend of RS-fMRI time series were quite different between different manufactures. The 3T SIEMENS scanners showed positive linear trend in almost all part of the brain, while GE scanners showed primarily negative linear trend in most part of the brain. Paired ttests showed some differences between paired conditions; differences between EO-RS and EC-RS were mainly in cuneus and eyeballs, and differences between RT-FFF and S-FFF were found in the thalamus, anterior cingulate gyrus, and right sensorimotor cortex. The current study indicated that, while the manufacturer-dependent linear trend of RS-fMRI time series were mostly scanner-related noise, the linear trend may also be physiological noise (eyeballs) or even physiologically meaningful, especially during steady-state tasks.
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملPotential pitfalls when denoising resting state fMRI data using nuisance regression
In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear...
متن کاملFunctional connectivity in resting-state fMRI: Is linear correlation sufficient?
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strengt...
متن کامل