Polyunsaturated fatty acids inhibit S14 gene transcription in rat liver and cultured hepatocytes.
نویسندگان
چکیده
Polyunsaturated fatty acids (PUFAs) have been shown to have significant effects on hepatic lipogenic gene expression. The S14 gene has been used as a model to examine the effects of PUFAs on hepatic lipogenic gene expression. In vivo studies showed that feeding rats a high carbohydrate diet containing menhaden oil rapidly (within hours) and significantly (> or = 50%) attenuates hepatic S14 gene transcription and S14 mRNA abundance. The suppressive effect of menhaden oil was both gene and tissue specific. The effect of PUFAs on expression of the S14 mRNA and a transfected S14 fusion gene (i.e., S14CAT4.3) was examined in cultured hepatocytes in the presence of triiodothyronine (T3), insulin, dexamethasone, and albumin under serum-free conditions. Whereas T3 stimulated both S14 mRNA (> 40-fold) and S14CAT4.3 (> 100-fold), eicosapentaenoic acid (C20:5 omega 3) significantly attenuated (> or = 80%) both S14 mRNA and S14CAT activity in a dose-dependent fashion. The effects of C20:5 on hepatocyte gene expression were both gene and fatty acid specific. Deletion analysis of transfected S14CAT fusion genes indicated that the S14 thyroid hormone response element (at -2.5 to -2.9 kb) was not sensitive to C20:5 control. The cis-linked PUFA response elements were localized to a region within the S14 proximal promoter (at -80 to -220 bp). This region also contains cis-acting elements that potentiate T3 activation of S14 gene transcription. These studies suggest that C20:5 (or its metabolites) regulates factors within the S14 proximal promoter region that are important for T3 activation of S14 gene transcription.
منابع مشابه
Polyunsaturated fatty acids inhibit fatty acid synthase and spot-14-protein gene expression in cultured rat hepatocytes by a peroxidative mechanism.
In vivo, polyunsaturated fatty acids (PUFA) inhibit the expression of hepatic genes related to the lipogenic process such as fatty acid synthase and spot-14-protein (S14) genes. In vitro studies have suggested that this was a direct transcriptional effect of PUFA. In hepatocytes, the inhibition of the lipogenic rate by PUFA is not specific, but is linked to a cytotoxic effect due to peroxidativ...
متن کاملArachidonic acid and PGE
N–6 polyunsaturated fatty acids (PUFA) suppress hepatic and adipocyte de novo lipogenesis by inhibiting the transcription of genes encoding key lipogenic proteins. In cultured 3T3-L1 adipocytes, arachidonic acid (20:4,n–6) suppression of lipogenic gene expression requires cyclooxygenase (COX) activity. In this study, we found no evidence to support a role for COX-1 or -2 in the 20:4,n–6 inhibit...
متن کاملPolyunsaturated fatty acids inhibit the expression of the glucose-6-phosphate dehydrogenase gene in primary rat hepatocytes by a nuclear posttranscriptional mechanism.
Expression of the glucose-6-phosphate dehydrogenase (G6PD) gene is inhibited by the addition of polyunsaturated fatty acids to the medium of primary hepatocytes in culture. To define the regulated step, we measured the abundance of G6PD mRNA both in the nucleus and in total RNA and measured the transcriptional activity of the G6PD gene. Insulin and glucose stimulated a 5- to 7-fold increase in ...
متن کاملThyromimetic effect of peroxisomal proliferators in rat liver.
Amphipathic carboxylates, of varying hydrophobic backbones, which act as peroxisomal proliferators (aryloxyalkanoic acids, methyl-substituted dicarboxylic acid) induce in euthyroid or thyroidectomized rats, as well as in rat hepatocytes cultured in 3,5,3'-tri-iodo-L-thyronine (T3)-free media, liver enzyme activities that are classically considered to be thyroid-hormone-dependent (malic enzyme, ...
متن کاملThe role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression.
Liver X receptors (LXR) alpha and beta play an important role in regulating the expression of genes involved in hepatic bile and fatty acid synthesis, glucose metabolism, as well as sterol efflux. Studies with human embryonic kidney 293 cells indicate that unsaturated fatty acids interfere with oxysterols binding to LXR and antagonize oxysterol-induced LXRalpha activity. In this report, we eval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 18 شماره
صفحات -
تاریخ انتشار 1993