Cooperative free energies for nested allosteric models as applied to human hemoglobin.
نویسندگان
چکیده
A model is developed for ligand binding to human hemoglobin that describes the detailed cooperative free-energies for each of the ten different ligated (cyanomet) species as observed by Smith and Ackers (Smith, F.R., and G.K. Ackers. 1985. Proc. Natl. Acad. Sci. USA.82:5347-5351). The approach taken here is an application of the general principle of hierarchical levels of allosteric control, or nesting, as suggested by Wyman (Wyman, J. 1972. Curr. Top. Cell. Reg. 6:207-223). The model is an extension of the simple two-state MWC model (Monod, J., J. Wyman, and J.P. Changeux. 1965. J. Mol. Biol. 12:88-118) using the idea of cooperative binding within the T (deoxy) form of the macromolecule, and has recently been described as a "cooperon" model (Di Cera, E. 1985. Ph.D. thesis). The T-state cooperative binding is described using simple interaction rules first devised by Pauling (Pauling, L. 1935. Proc. Natl. Acad. Sci. USA. 21:186-191). In this application three parameters suffice to describe the cooperative free-energies of the 10 ligated species of cyanomet hemoglobin. The redox process in the presence of cyanide, represented as a Hill plot, is simulated from Smith and Ackers' cooperative free-energies and is compared with available electrochemical binding measurements.
منابع مشابه
Allosteric interpretation of the measurement of cooperative free energy in cyanomethemoglobin.
The experimentally resolved cooperative energies in partially ligated cyanomethemoglobin [F. R. Smith & G. K. Ackers (1985) Proc. Natl. Acad. Sci. USA 82, 5347-5351] have been compared with the predictions of an allosteric description of hemoglobin. A pattern of energetics similar to that observed (a "combinatorial switch") arises naturally from such an analysis using parameters in excellent ag...
متن کاملGlobal allostery model of hemoglobin. Modulation of O(2) affinity, cooperativity, and Bohr effect by heterotropic allosteric effectors.
The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its in...
متن کاملThree-state combinatorial switching in hemoglobin tetramers: comparison between functional energetics and molecular structures.
In a previous study on cyanomethemoglobin the 10 tetrameric species (each with a unique combination of ligated and unligated subunits) were found to exhibit three distinct free energies of cooperative interaction. The distribution of these free energies among the partially ligated species is incompatible with a two-state mechanism of molecular switching and requires a minimum of three molecular...
متن کاملResolving the Fast Kinetics of Cooperative Binding: Ca2+ Buffering by Calretinin
Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity) or increased (positive cooperativity). O...
متن کاملGeneral form of a cooperative gradual maximal covering location problem
Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location–allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 50 4 شماره
صفحات -
تاریخ انتشار 1986