Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis

نویسندگان

  • S. D. Feng
  • W. Jiao
  • Q. Jing
  • L. Qi
  • S. P. Pan
  • G. Li
  • M. Z. Ma
  • W. H. Wang
  • R. P. Liu
چکیده

Structural evolution in nanoscale Cu50Zr50 metallic glasses during high-pressure torsion is investigated using molecular dynamics simulations. Results show that the strong cooperation of shear transformations can be realized by high-pressure torsion in nanoscale Cu50Zr50 metallic glasses at room temperature. It is further shown that high-pressure torsion could prompt atoms to possess lower five-fold symmetries and higher potential energies, making them more likely to participate in shear transformations. Meanwhile, a higher torsion period leads to a greater degree of forced cooperative flow. And the pronounced forced cooperative flow at room temperature under high-pressure torsion permits the study of the shear transformation, its activation and characteristics, and its relationship to the deformations behaviors. This research not only provides an important platform for probing the atomic-level understanding of the fundamental mechanisms of high-pressure torsion in metallic glasses, but also leads to higher stresses and homogeneous flow near lower temperatures which is impossible previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of configurational disorder on plastic and dynamic deformation in Cu64Zr36 metallic glasses: A molecular dynamics analysis

The varying degrees of configurational disorder in metallic glasses are investigated quantitatively by molecular dynamics studies. A parameter, the quasi-nearest atom, is used to characterize the configurational disorder in metallic glasses. Our observations suggest configurational disorder play a role in structural heterogeneity, plasticity and dynamic relaxations in metallic glasses. The broa...

متن کامل

Percolation structure in metallic glasses and liquids

The atomic-level structures of liquids and glasses are similar, obscuring any structural basis for the glass transition. To delineate structural differences between them, we characterized the atomic structures using the integrated radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: Cu46Zr54, Ni80Al20, Ni33.3Zr66.7, and Pd82Si18....

متن کامل

High-rate squeezing process of bulk metallic glasses

High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are i...

متن کامل

Mechanical Properties of Metallic Glasses

Metallic glasses are known for their outstanding mechanical strength. However, the microscopic mechanism of failure in metallic glasses is not well-understood. In this article we discuss elastic, anelastic and plastic behaviors of metallic glasses from the atomistic point of view, based upon recent results by simulations and experiments. Strong structural disorder affects all properties of meta...

متن کامل

Structure Analyses of Fe-based Metallic Glasses by Electron Diffraction

Nanoscale structural information of amorphous structures has become obtainable by using nanobeam electron diffraction in combination with high resolution imaging. In addition, accurate radial distribution function analysis using energy filter has also become available to know averaged amorphous structures. In this paper, we introduce some applications of these techniques, especially to several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016