Spectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI

نویسندگان

  • Stefano De Marchi
  • Wolfgang Erb
  • Francesco Marchetti
  • A. Weinmann
چکیده

Polynomial interpolation and approximation methods on sampling points along Lissajous curves using Chebyshev series is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image if the underlying function has discontinuities. A possible solution for this problem are spectral filtering methods acting on the coefficients of the approximating polynomial. In this work, after a description of the Gibbs phenomenon and classical filtering techniques in one and several dimensions, we present an adaptive spectral filtering process for the resolution of this phenomenon and for an improved approximation of the underlying function or image. In this adaptive filtering technique, the spectral filter depends on the distance of a spatial point to the nearest discontinuity. We show the effectiveness of this filtering approach in theory, in numerical simulations as well as in the application in Magnetic Particle Imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trivariate polynomial approximation on Lissajous curves ∗

We study Lissajous curves in the 3-cube that generate algebraic cubature formulas on a special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun package), and to compute discrete extremal sets of Fekete and Leja type for trivariate polynomial interpolation. Applications co...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

Edge Detection Free Postprocessing for Pseudospectral Approximations

Pseudospectral Methods based on global polynomial approximation yield exponential accuracy when the underlying function is analytic. The presence of discontinuities destroys the extreme accuracy of the methods and the well-known Gibbs phenomenon appears. Several types of postprocessing methods have been developed to lessen the effects of the Gibbs phenomenon or even to restore spectral accuracy...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

The Resolution of the Gibbs Phenomenon for Fourier Spectral Methods

Fourier spectral methods have emerged as powerful computational techniques for the simulation of complex smooth physical phenomena. Their exponential convergence rate depends on the smoothness and periodicity of the function in the domain of interest. If the function has a discontinuity at even one point, the convergence rate deteriorates to first order and spurious oscillations develop near th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017