Macrophage-Derived Metalloelastase Is Responsible for the Generation of Angiostatin in Lewis Lung Carcinoma
نویسندگان
چکیده
To determine the mechanism responsible for the in vivo production of angiostatin that inhibits growth and metastasis in Lewis lung carcinoma (3LL), we implanted 3LL variant cells into the subcutis of syngeneic C57BL/6 mice. The tumors were infiltrated by macrophages and expressed high levels of steady-state mRNA for metalloelastase (MME). Successive passages (more than three) of cultures established from the tumors resulted in complete depletion of macrophages; steady-state MME mRNA, elastinolytic activity, and production of angiostatin (in the presence of plasminogen) were correspondingly reduced. Coculture of macrophages with either 3LL cells or their conditioned media containing granulocyte-macrophage colony-stimulating factor resulted in secretion of MME and production of angiostatin by the macrophages, suggesting that angiostatin is produced by tumor-infiltrating macrophages whose MME expression is stimulated by tumor cell-derived granulocyte-macrophage colony-stimulating factor.
منابع مشابه
Matrix metalloproteinases generate angiostatin: effects on neovascularization.
Angiostatin, a cleavage product of plasminogen, has been shown to inhibit endothelial cell proliferation and metastatic tumor cell growth. Recently, the production of angiostatin has been correlated with tumor-associated macrophage production of elastolytic metalloproteinases in a murine model of Lewis lung cell carcinoma. In this report we demonstrate that purified murine and human matrix meta...
متن کاملThe mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin.
Angiostatin, a potent naturally occurring inhibitor of angiogenesis and growth of tumor metastases, is generated by cancer-mediated proteolysis of plasminogen. Human prostate carcinoma cells (PC-3) release enzymatic activity that converts plasminogen to angiostatin. We have now identified two components released by PC-3 cells, urokinase (uPA) and free sulfhydryl donors (FSDs), that are sufficie...
متن کاملAngiostatin-mediated Suppression of Cancer Metastases by Primary Neoplasms Engineered to Produce Granulocyte/Macrophage Colony–stimulating Factor
We determined whether tumor cells consistently generating granulocyte/macrophage colony- stimulating factor (GM-CSF) can recruit and activate macrophages to generate angiostatin and, hence, inhibit the growth of distant metastasis. Two murine melanoma lines, B16-F10 (syngeneic to C57BL/6 mice) and K-1735 (syngeneic to C3H/HeN mice), were engineered to produce GM-CSF. High GM-CSF (>1 ng/10(6) ce...
متن کاملMouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis.
Mouse macrophage metalloelastase (MME) has been associated with the generation of angiostatin, an internal fragment of plasminogen, which inhibits angiogenesis. To clarify whether tumor cells that consistently generate MME can suppress angiogenesis and, therefore, inhibit the growth of primary tumors in vivo, we transfected a cDNA coding for MME into murine B16-BL6 melanoma cells that grow rapi...
متن کاملAdvances in Brief Mouse Macrophage Metalloelastase Gene Transfer into a Murine Melanoma Suppresses Primary Tumor Growth by Halting Angiogenesis
Mouse macrophage metalloelastase (MME) has been associated with the generation of angiostatin, an internal fragment of plasminogen, which inhibits angiogenesis. To clarify whether tumor cells that consistently generate MME can suppress angiogenesis and, therefore, inhibit the growth of primary tumors in vivo, we transfected a cDNA coding for MME into murine B16-BL6 melanoma cells that grow rapi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 88 شماره
صفحات -
تاریخ انتشار 1997