Non Blow-up of the 3d Euler Equations for a Class of Three-dimensional Initial Data in Cylindrical Domains
نویسندگان
چکیده
Non blow-up of the 3D incompressible Euler Equations is proven for a class of threedimensional initial data characterized by uniformly large vorticity in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutions close to some 2D manifold. The approach of proving regularity is based on investigation of fast singular oscillating limits and nonlinear averaging methods in the context of almost periodic functions. We establish the global regularity of the 3D limit resonant Euler equations without any restriction on the size of 3D initial data. After establishing strong convergence to the limit resonant equations, we bootstrap this into the regularity on arbitrary large time intervals of the solutions of 3D Euler Equations with weakly aligned uniformly large vorticity at t = 0.
منابع مشابه
Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains
A class of three-dimensional initial data characterized by uniformly large vorticity is considered for the 3D incompressible Euler equations in bounded cylindrical domains. The fast singular oscillating limits of the 3D Euler equations are investigated for parametrically resonant cylinders. Resonances of fast oscillating swirling Beltrami waves deplete the Euler nonlinearity. These waves are ex...
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملRegularity of Euler Equations for a Class of Three-Dimensional Initial Data
The 3D incompressible Euler Equations with initial data characterized by uniformly large vorticity are investigated. We prove existence on long time intervals of regular solutions to the 3D incompressible Euler Equations for a class of large initial data in bounded cylindrical domains. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutio...
متن کاملBlow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations
Whether the 3D incompressible Euler and Navier–Stokes equations can develop a finite-time singularity from smooth initial data with finite energy has been one of the most long-standing open questions. We review some recent theoretical and computational studies which show that there is a subtle dynamic depletion of nonlinear vortex stretching due to local geometric regularity of vortex filaments...
متن کاملOne Dimensional Internal Ballistics Simulation of Solid Rocket Motor
An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steg...
متن کامل