Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors.
نویسندگان
چکیده
Elaborate and exhaustive first principles calculations were carried out to screen the novel properties of a series of acene fused buckybowls. The acene fused compounds exhibit hole transport property due to their higher electron injection and lower hole transport barrier relative to the work function potential of Au electrodes. The higher HOMO and lower LUMO energy levels suggest lower hole and electron injection barriers of F and CN substituted and boron doped bowls which indicates ambipolar property of these bowls. The dicyano substituted pentacene fused bowls show only electron transport property with lower LUMO (-4.26 eV to -4.27 eV) and higher HOMO (-5.56 eV to -5.90 eV) energy levels. High electron affinity (>2.80 eV) and low LUMO energy (< -4.00 eV) attributes air stability to these bowls. Curvature decreased frontier orbital energies and increased ionization energy and electron affinity of bowls. This study reveals substitution of electron withdrawing groups and boron doped acene fused bowls can be a prominent materials for ambipolar and electron transport organic semiconductors.
منابع مشابه
Chlorination: a general route toward electron transport in organic semiconductors.
We show that adding chlorine atoms to conjugated cores is a general, effective route toward the design of n-type air-stable organic semiconductors. We find this to be true for acenes, phthalocyanines, and perylene tetracarboxylic diimide (PDI)-based molecules. This general finding opens new avenues in the design and synthesis of organic semiconductors. We compared a series of fluoro- and chloro...
متن کاملHigh and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences.
We demonstrate a strategy for designing high-performance, ambipolar, acene-based field-effect transistor (FET) materials, which is based on the replacement of C-H moieties by nitrogen atoms in oligoacenes. By using this strategy, two organic semiconductors, 6,13-bis(triisopropylsilylethynyl)anthradipyridine (1) and 8,9,10,11-tetrafluoro-6,13-bis(triisopropylsilylethynyl)-1-azapentacene (3), wer...
متن کاملAir-stable solution-processed ambipolar organic field-effect transistors based on a dicyanomethylene-substituted terheteroquinoid derivative.
Dicyanomethylene-substituted quinoidal mixed oligomer was synthesized as a new soluble organic semiconductor, and OFET devices fabricated with a spin-coated thin film of showed ambipolar FET characteristics with electron and hole mobilities of 1.6 x 10(-2) and 7.0 x 10(-3) cm(2) V(-1) s(-1), respectively.
متن کاملElectron and hole polaron accumulation in low-bandgap ambipolar donor-acceptor polymer transistors imaged by infrared microscopy
A resurgence in the use of the donor-acceptor approach in synthesizing conjugated polymers has resulted in a family of high-mobility ambipolar systems with exceptionally narrow energy bandgaps below 1 eV. The ability to transport both electrons and holes is critical for device applications such as organic light-emitting diodes and transistors. Infrared spectroscopy offers direct access to the l...
متن کاملA furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors.
Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm(2) V(-1) s(-1) and 0.56 cm(2) V(-1) s(-1), respectively, are achieved for PDPP-FBF.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2013