PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription.
نویسندگان
چکیده
Transcriptional activation by CLOCK-CYCLE (CLK-CYC) heterodimers and repression by PERIOD-TIMELESS (PER-TIM) heterodimers are essential for circadian oscillator function in Drosophila. PER-TIM was previously found to interact with CLK-CYC to repress transcription, and here we show that this interaction inhibits binding of CLK-CYC to E-box regulatory elements in vivo. Coincident with the interaction between PER-TIM and CLK-CYC is the hyperphosphorylation of CLK. This hyperphosphorylation occurs in parallel with the PER-dependent entry of DOUBLE-TIME (DBT) kinase into a complex with CLK-CYC, where DBT destabilizes both CLK and PER. Once PER and CLK are degraded, a novel hypophosphorylated form of CLK accumulates in parallel with E-box binding and transcriptional activation. These studies suggest that PER-dependent rhythms in CLK phosphorylation control rhythms in E-box-dependent transcription and CLK stability, thus linking PER and CLK function during the circadian cycle and distinguishing the transcriptional feedback mechanism in flies from that in mammals.
منابع مشابه
CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE
The Drosophila circadian oscillator controls daily rhythms in physiology, metabolism and behavior via transcriptional feedback loops. CLOCK-CYCLE (CLK-CYC) heterodimers initiate feedback loop function by binding E-box elements to activate per and tim transcription. PER-TIM heterodimers then accumulate, bind CLK-CYC to inhibit transcription, and are ultimately degraded to enable the next round o...
متن کاملBalance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein.
The first circadian-relevant kinase to be identified was DOUBLE-TIME (DBT) in Drosophila, a homolog of vertebrate CKIepsilon, which regulates the progressive phosphorylation and stability of PERIOD (PER) proteins in animals. A negative feedback loop wherein PER directly inhibits the transcriptional activity of the CLOCK-CYCLE (CLK-CYC) heterodimer is central to the generation of molecular rhyth...
متن کاملDOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock.
Circadian clocks keep time via gene expression feedback loops that are controlled by time-of-day-specific changes in the synthesis, activity, and degradation of transcription factors. Within the Drosophila melanogaster circadian clock, DOUBLETIME (DBT) kinase is necessary for the phosphorylation of PERIOD (PER), a transcriptional repressor, and CLOCK (CLK), a transcriptional activator, as CLK-d...
متن کاملCLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila.
A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interac...
متن کاملTranscriptional and Translational Mechanisms Controlling Circadian Rhythms in Drosophila: A Dissertation
Circadian rhythms are self-sustained 24-hour period oscillations present in most organisms, from bacteria to human. They can be synchronized to external cues, thus allowing organisms to anticipate environmental variations and optimize their performance in nature. In Drosophila, the molecular pacemaker consists of two interlocked transcriptional feedback loops. CLOCK/CYCLE (CLK/CYC) sits in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2006