Synthesis and characterization of electrically conductive polyethylene-supported graphene films

نویسندگان

  • Gianfranco Carotenuto
  • Sergio De Nicola
  • Giovanni Ausanio
  • Davide Massarotti
  • Luigi Nicolais
  • Giovanni Piero Pepe
چکیده

UNLABELLED We describe a simple mechanical approach for low-density polyethylene film coating by multilayer graphene. The technique is based on the exfoliation of nanocrystalline graphite (few-layer graphene) by application of shear stress and allows to obtain thin graphene layers on the plastic substrate. We report on the temperature dependence of electrical resistance behaviors in films of different thickness. The experimental results suggest that the semiconducting behavior observed at low temperature can be described in the framework of the Efros-Shklovskii variable-range-hopping model. The obtained films exhibit good electrical conductivity and transparency in the visible spectral region. PACS 72.80.Vp; 78.67.Wj; 78.66.Qn; 85.40.Hp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conduct...

متن کامل

Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects ...

متن کامل

Fast and Non-Catalytic Growth of Transparent & Conductive Graphene-Like Carbon Films on Glass at Low Temperature

This article presents the synthesis and systematic study on graphene-like carbon thin films directly grown on commercial glass by using remote-ECR Plasma Assisted CVD. The fabrication process is extremely rapid and performed on to 2 inch scale dielectric substrate at relatively low temperature (< 550oC) without using metal catalyst. This method avoids damaging and expensive transfer processes o...

متن کامل

Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols

Grafting of 3-aminopropyltriethoxysilane (APTS) on graphene oxide (GO) nanosheets followed by reaction with phosphotungstic acid (H3PW12O40, denoted as H3PW) gave a new functionalized GO which was characterized using FT-IR, FESEM, EDX, EDX elemental mapping and ICP-OES techniques. The catalytic activity of this nanomaterial containing phosphotungstic counter-anion H2PW12O40¯ (H2PW) which was de...

متن کامل

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014