AKT2 is the predominant AKT isoform expressed in human skeletal muscle
نویسندگان
چکیده
Skeletal muscle physiology and metabolism are regulated by complex networks of intracellular signaling pathways. Among many of these pathways, the protein kinase AKT plays a prominent role. While three AKT isoforms have been identified (AKT1, AKT2, and AKT3), surprisingly little is known regarding isoform-specific expression of AKT in human skeletal muscle. To address this, we examined the expressions of each AKT isoform in muscle biopsy samples collected from the vastus lateralis of healthy male adults at rest. In muscle, AKT2 was the most highly expressed AKT transcript, exhibiting a 15.4-fold increase over AKT1 and AKT3 transcripts. Next, the abundance of AKT protein isoforms was determined using antibody immunoprecipitation followed by Liquid Chromatography-Parallel Reaction Monitoring/Mass Spectrometry. Immunoprecipitation was performed using either mouse or rabbit pan AKT antibodies that were immunoreactive with all three AKT isoforms. We found that AKT2 was the most abundant AKT isoform in human skeletal muscle (4.2-fold greater than AKT1 using the rabbit antibody and 1.6-fold greater than AKT1 using the mouse antibody). AKT3 was virtually undetectable. Next, cultured primary human myoblasts were virally-transduced with cDNAs encoding either wild-type (WT) or kinase-inactive AKT1 (AKT1-K179M) or AKT2 (AKT2-K181M) and allowed to terminally differentiate. Myotubes expressing WT-AKT1 or WT-AKT2 showed enhanced fusion compared to control myotubes, while myotubes expressing AKT1-K179M showed a 14% reduction in fusion. Myotubes expressing AKT2-K181M displayed 63% decreased fusion compared to control. Together, these data identify AKT2 as the most highly-expressed AKT isoform in human skeletal muscle and as the principal AKT isoform regulating human myoblast differentiation.
منابع مشابه
Disassociation of insulin action and Akt/FOXO signaling in skeletal muscle of older Akt-deficient mice.
The purpose of the present study was to determine the effect of Akt gene ablation on Akt/Forkhead Box O (FOXO) signaling and atrogene expression. This was accomplished by studying wild-type (WT) and isoform-specific Akt knockout (Akt1(-/-) and Akt2(-/-)) mice. The ability of insulin to promote Akt phosphorylation on Ser(473) was significantly lower in extensor digitorum longus (EDL) and soleus ...
متن کاملInsulin-induced Effects on the Subcellular Localization of AKT1, AKT2 and AS160 in Rat Skeletal Muscle
AKT1 and AKT2, the AKT isoforms that are highly expressed in skeletal muscle, have distinct and overlapping functions, with AKT2 more important for insulin-stimulated glucose metabolism. In adipocytes, AKT2 versus AKT1 has greater susceptibility for insulin-mediated redistribution from cytosolic to membrane localization, and insulin also causes subcellular redistribution of AKT Substrate of 160...
متن کاملAnkrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2
Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C(2)C(12) murine muscle cells exploiting protein characterization databases in combination with an anti-phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repea...
متن کاملRole of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents an...
متن کاملThe Effect of Resistance Training and Endothelial Stem Cell Injection on Βeta-Actin, Phosphorylated and Total AKT of Skeletal Muscle in Type 1 Diabetic Rats
Background: Type 1 diabetes is associated with decreased skeletal muscle capillary and improper regulation of angiogenesis pathways in skeletal muscle. This research intended to study the effect of resistance training and endothelial stem cell injection on βeta-actin, phosphorylated and total AKT of skeletal muscle in type 1 diabetic rats. Methods: In this experimental study, 36 male Wistar ra...
متن کامل