Extracellular vesicles as emerging intercellular communicasomes
نویسندگان
چکیده
All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.
منابع مشابه
Exosomes: Mediators of Immune Regulation
Extracellular Vesicles, including exosomes, are small membrane fragments released from many cell types, like Mesenchymal Stem Cells (MSCs). They were recognized as a mechanism of intercellular communication. They can transfer proteins, lipids and nucleic acids to other cells. Thus, they have many physiological (angiogenesis, coagulation and tissue repair, etc.) and pathological (e.g. in autoimm...
متن کاملExtracellular Vesicles in Heart Disease: Excitement for the Future ?
Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is a...
متن کاملExtracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease.
Metabolic homeostasis emerges from the complex, multidirectional crosstalk between key metabolic tissues including adipose tissue, liver, and skeletal muscle. This crosstalk, traditionally mediated by hormones and metabolites, becomes dysregulated in human diseases such as obesity and diabetes. Extracellular vesicles (EVs; including exosomes) are circulating, cell-derived nanoparticles containi...
متن کاملRole of extracellular membrane vesicles in intercellular communication of the tumour microenvironment.
Over the last few decades, extensive studies by several groups have introduced the concept of cell-derived secreted extracellular membrane vesicles as carriers of complex molecular information. Owing to their pleiotropic biological effects and involvement in a wide variety of biological processes, extracellular membrane vesicles have been implicated in physiological as well as pathological even...
متن کاملExtracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicle...
متن کامل