Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter
نویسنده
چکیده
Finite-temperature density functional theory (DFT) has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM). Warm-dense matter (WDM), ultra-fast matter (UFM), and high-energy density matter (HEDM) may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti 6= Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC) functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm-dense matter and ultra-fast matter will be presented.
منابع مشابه
Nonempirical Semi-local Free-Energy Density Functional for Warm Dense Matter
The potential for density functional theory calculations to address, reliably, the extreme conditions of warm dense matter is predicated upon having an accurate representation for the free energy functional over a wide range of state conditions. Distinct from the ground-state situation, no such exchange-correlation functional exists. We remedy that with a systematic, constraint-based constructi...
متن کاملElectronic transport in Si and Au monoatomic chains considering strongly correlation effect, a first principle study
We have investigated structure and electronic properties of Au and Si liner chains using the firstprinciplesplane wave pseudopotential method. The transport properties and conductance of these twoliner chains are studied using Landauer approaches based on density functional theory (DFT). Weobtain density of states and band gap using Kohn-Sham and Wannier functions as well as quantumconductivity...
متن کاملComparison of density functional approximations and the finite-temperature Hartree-Fock approximation in warm dense lithium.
We compare the behavior of the finite-temperature Hartree-Fock model with that of thermal density functional theory using both ground-state and temperature-dependent approximate exchange functionals. The test system is bcc Li in the temperature-density regime of warm dense matter (WDM). In this exchange-only case, there are significant qualitative differences in results from the three approache...
متن کاملImportance of finite-temperature exchange correlation for warm dense matter calculations.
The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.110...
متن کاملInnovations in Finite-Temperature Density Functionals
Reliable, tractable computational characterization of warm dense matter is a challenging task because of the wide range of important aggregation states and effective interactions involved. Contemporary best practice is to do ab initio molecular dynamics on the ion constituents with the forces from the electronic population provided by density functional calculations. Issues with that approach i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computation
دوره 4 شماره
صفحات -
تاریخ انتشار 2016