Differential expression of kcnq2 splice variants: implications to m current function during neuronal development.
نویسندگان
چکیده
The KCNQ family of K(+) channels has been implicated in several cardiac and neurological disease pathologies. KCNQ2 (Q2) is a brain-derived gene, which in association with KCNQ3 (Q3) has been shown to provide a molecular basis for the neuronal M current. We have cloned a long (Q2L) and a short (Q2S) splice variant of the human KCNQ2 gene; these variants differ in their C-terminal tail. Northern blot analysis reveals that Q2L is preferentially expressed in differentiated neurons, whereas the Q2S transcript is prominent in fetal brain, undifferentiated neuroblastoma cells, and brain tumors. Q2L, transfected into mammalian cells, produces a slowly activating, noninactivating voltage-gated K(+) current that is blocked potently by tetraethylammonium (TEA; IC(50), 0.14 mm). Q2S on the other hand produces no measurable potassium currents. Cotransfection of Q2S with either Q2L, Q3, or Q2L/Q3 heteromultimers results in attenuation of K(+) current, the suppression being most profound for Q3. Inclusion of Q2S in the heteromultimer also positively shifts the voltage dependence of current activation and alters affinity for the TEA block, suggesting that under these conditions, some Q2S subunits incorporate into functional channels on the plasma membrane. In view of the crucial role of M currents in modulating neuronal excitability, our findings provide important insight into the functional consequences of differential expression of KCNQ2 splice variants: dampened potassium conductances in the developing brain could shape firing repertoires to provide cues for proliferation rather than differentiation.
منابع مشابه
O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice
The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....
متن کاملتأثیر آدنوزین ´5تری فسفات در القای آپوپتوز و مهار بیان ژن Survivin و واریانت پیرایشی ضد آپوپتوزی SUR-3B آن در سلول های K562
Introduction: Leukemia is a heterogeneous malignant disease in which progression at the level of CD34+ cells has a major impact in drug resistance and relapse. The multi-drug resistance gene product, P-glycoprotein is an inhibitor of apoptosis proteins (IAPs), such as Survivin that are expressed simultaneously with several putative drug resistance parameters in CD34+ leukemia cells. In fact, IA...
متن کاملCalmodulin regulates KCNQ2 function in epilepsy.
Epilepsy is linked to mutations in KCNQ channels. KCNQ channels including KCNQ2 and KCNQ3 are enriched in neurons, regulating action potential generation and modulation. Here, we showed that properties of KCNQ2 channel in rat hippocampal cultured neurons are regulated by ubiquitous calcium sensor calmodulin. We analyzed calmodulin function on the KCNQ2 channel in both HEK293 cells and neurons. ...
متن کاملExpression analysis of human intersectin 2 gene (ITSN2) minor splice variants showing differential expression in normal human brain.
Human intersectins 1 and 2 (ITSN1 and ITSN2) are conserved proteins involved in clathrin-mediated endocytosis. In both, two major splice variants, the so-called long and short isoforms have been identified. Whereas most analyses so far focussed on ITSN1, little is known about ITSN2. Data from expression analyses for the intersectin genes mainly refer to the major isoforms. Only recently have a ...
متن کاملLong and short splice variants of human tenascin differentially regulate neurite outgrowth.
Tenascin-C has been implicated in regulation of neurite outgrowth both during development and after injury; however, its role as permissive vs inhibitory remains controversial. We report that different tenascin splice variants may have dramatically different impacts on neuronal growth. In a cell culture model, the largest and smallest splice variants (TN.L and TN.S) of human tenascin both promo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2001