Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors.

نویسندگان

  • Stefanie Babilon
  • Karin Mörl
  • Annette G Beck-Sickinger
چکیده

The neuropeptide Y system is known to be involved in the regulation of many central physiological and pathophysiological processes, such as energy homeostasis, obesity, cancer, mood disorders and epilepsy. Four Y receptor subtypes have been cloned from human tissue (hY1, hY2, hY4 and hY5) that form a multiligand/multireceptor system together with their three peptidic agonists (NPY, PYY and PP). Addressing this system for medical application requires on the one hand detailed information about the receptor-ligand interaction to design subtype-selective compounds. On the other hand comprehensive knowledge about alternative receptor signaling, as well as desensitization, localization and downregulation is crucial to circumvent the development of undesired side-effects and drug resistance. By bringing such knowledge together, highly potent and long-lasting drugs with minimized side-effects can be engineered. Here, current knowledge about Y receptor export, internalization, recycling, and degradation is summarized, with a focus on the human Y receptor subtypes, and is discussed in terms of its impact on therapeutic application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, labeling and quality control of a new Neuropeptide Y analogue for diagnosis of breast tumors

  Introduction: Over expression of selected peptide receptors in human tumors has been shown to represent clinically relevant targets for cancer diagnosis and therapy. The aim of this work was to investigate Neuropeptide Y (NPY) as a new radiopharmaceutical for diagnosis of breast cancer. Methods: A neuropeptide Y analogues with Y1 receptor preference and agonistic p...

متن کامل

Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor.

Desensitization of G protein-coupled receptors (GPCRs) involves receptor phosphorylation and reduction in the number of receptors at the cell surface. The neuropeptide Y (NPY) Y(1) receptor undergoes fast desensitization. We examined agonist-induced signaling and internalization using NPY Y(1) receptors fused to green fluorescent protein (EGFP). When expressed in HEK293 cells, EGFP-hNPY Y(1) re...

متن کامل

Effect of blockade of neuropeptide Y receptor on aortic intima-media thickness and adipose tissue characteristics in normal and obese mice

Objective(s): Atherosclerosis is an important risk factor for coronary heart disease. Neuropeptide Y (NPY) and its receptors, located in peripheral tissue such as white adipose tissue, have been linked to obesity and fat storage. The role of NPY in atherosclerosis has not yet been fully studied, so this study was conducted to further investigate the effect of BIIE 0246, an NPY receptor antagoni...

متن کامل

Role of Cysteine Residues in the Carboxyl-Terminus of the Follicle-Stimulating Hormone Receptor in Intracellular Traffic and Postendocytic Processing

Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cy...

متن کامل

Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses.

Axonal targeting of trophic receptors is critical for neuronal responses to extracellular developmental cues, yet the underlying trafficking mechanisms remain unclear. Here, we report that tropomyosin-related kinase (Trk) receptors for target-derived neurotrophins are anterogradely trafficked to axons via transcytosis in sympathetic neurons. Using compartmentalized cultures, we show that mature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biological chemistry

دوره 394 8  شماره 

صفحات  -

تاریخ انتشار 2013