GSNs : Generative Stochastic Networks

نویسندگان

  • Guillaume Alain
  • Yoshua Bengio
  • Li Yao
  • Jason Yosinski
  • Eric Thibodeau-Laufer
  • Saizheng Zhang
  • Pascal Vincent
چکیده

We introduce a novel training principle for generative probabilistic models that is an alternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN) framework generalizes Denoising Auto-Encoders (DAE) and is based on learning the transition operator of a Markov chain whose stationary distribution estimates the data distribution. The transition distribution is a conditional distribution that generally involves a small move, so it has fewer dominant modes and is unimodal in the limit of small moves. This simplifies the learning problem, making it less like density estimation and more akin to supervised function approximation, with gradients that can be obtained by backprop. The theorems provided here provide a probabilistic interpretation for denoising autoencoders and generalize them; seen in the context of this framework, auto-encoders that learn with injected noise are a special case of GSNs and can be interpreted as generative models. The theorems also provide an interesting justification for dependency networks and generalized pseudolikelihood and define an appropriate joint distribution and sampling mechanism, even when the conditionals are not consistent. GSNs can be used with missing inputs and can be used to sample subsets of variables given the rest. Experiments validating these theoretical results are conducted on both synthetic datasets and image datasets. The experiments employ a particular architecture that mimics the Deep Boltzmann Machine Gibbs sampler but that allows training to proceed with backprop through a recurrent neural network with noise injected inside and without the need for layerwise pretraining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal Transitions for Generative Stochastic Networks

Generative Stochastic Networks (GSNs) have been recently introduced as an alternative to traditional probabilistic modeling: instead of parametrizing the data distribution directly, one parametrizes a transition operator for a Markov chain whose stationary distribution is an estimator of the data generating distribution. The result of training is therefore a machine that generates samples throu...

متن کامل

Single channel source separation with general stochastic networks

Single channel source separation (SCSS) is ill-posed and thus challenging. In this paper, we apply general stochastic networks (GSNs) – a deep neural network architecture – to SCSS. We extend GSNs to be capable of predicting a time-frequency representation, i.e. softmask by introducing a hybrid generative-discriminative training objective to the network. We evaluate GSNs on data of the 2nd CHiM...

متن کامل

On representation learning for artificial bandwidth extension

Recently, sum-product networks (SPNs) showed convincing results on the ill-posed task of artificial bandwidth extension (ABE). However, SPNs are just one type of many architectures which can be summarized as representational models. In this paper, using ABE as benchmark task, we perform a comparative study of Gauss Bernoulli restricted Boltzmann machines, conditional restricted Boltzmann machin...

متن کامل

On the Equivalence between Deep NADE and Generative Stochastic Networks

Neural Autoregressive Distribution Estimators (NADEs) have recently been shown as successful alternatives for modeling high dimensional multimodal distributions. One issue associated with NADEs is that they rely on a particular order of factorization for P (x). This issue has been recently addressed by a variant of NADE called Orderless NADEs and its deeper version, Deep Orderless NADE. Orderle...

متن کامل

Deep Generative Stochastic Networks Trainable by Backprop

We introduce a novel training principle for probabilistic models that is an alternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN) framework is based on learning the transition operator of a Markov chain whose stationary distribution estimates the data distribution. The transition distribution of the Markov chain is conditional on the previous state, generally invo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.05571  شماره 

صفحات  -

تاریخ انتشار 2015