Polyphyletic origin of pyrrolizidine alkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase.

نویسندگان

  • Sven Anke
  • Daniel Niemüller
  • Stefanie Moll
  • Robert Hänsch
  • Dietrich Ober
چکیده

The evolution of pathways within plant secondary metabolism has been studied by using the pyrrolizidine alkaloids (PAs) as a model system. PAs are constitutively produced by plants as a defense against herbivores. The occurrence of PAs is restricted to certain unrelated families within the angiosperms. Homospermidine synthase (HSS), the first specific enzyme in the biosynthesis of the necine base moiety of PAs, was originally recruited from deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. Recently, this gene recruitment has been shown to have occurred several times independently within the angiosperms and even twice within the Asteraceae. Here, we demonstrate that, within these two PA-producing tribes of the Asteraceae, namely Senecioneae and Eupatorieae, HSS is expressed differently despite catalyzing the same step in PA biosynthesis. Within Eupatorium cannabinum, HSS is expressed uniformly in all cells of the root cortex parenchyma, but not within the endodermis and exodermis. Within Senecio vernalis, HSS expression has been previously identified in groups of specialized cells of the endodermis and the adjacent root cortex parenchyma. This expression pattern was confirmed for Senecio jacobaea as well. Furthermore, the expression of HSS in E. cannabinum is dependent on the development of the plant, suggesting a close linkage to plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages.

Species of several unrelated families within the angiosperms are able to constitutively produce pyrrolizidine alkaloids as a defense against herbivores. In pyrrolizidine alkaloid (PA) biosynthesis, homospermidine synthase (HSS) catalyzes the first specific step. HSS was recruited during angiosperm evolution from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activatio...

متن کامل

Cell-specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloid pathway in Senecio vernalis, in comparison with its ancestor, deoxyhypusine synthase.

Pyrrolizidine alkaloids (PAs) are constitutive plant defense compounds with a sporadic taxonomic occurrence. The first committed step in PA biosynthesis is catalyzed by homospermidine synthase (HSS). Recent evidence confirmed that HSS evolved by gene duplication from deoxyhypusine synthase (DHS), an enzyme involved in the posttranslational activation of the eukaryotic translation initiation fac...

متن کامل

Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase.

Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown t...

متن کامل

Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds.

Pyrrolizidine alkaloids (PAs) are typical compounds of plant secondary metabolism and are believed to be part of the plant's chemical defense. Within the monocotyledonous plants, PAs have been described in only a few genera, mainly orchids, including Phalaenopsis. Because phylogenetic analyses suggest an independent origin of PA biosynthesis within the monocot lineage, we have analyzed the deve...

متن کامل

Spermidine metabolism in parasitic protozoa--a comparison to the situation in prokaryotes, viruses, plants and fungi.

Targeting polyamines of parasitic protozoa in chemotherapy has attracted attention because polyamines might reveal novel drug targets for antiparasite therapies (Müller et al. 2001). The biological function of the triamine spermidine in parasitic protozoa has not been studied in great detail although the results obtained mainly imply three different functions, i.e., cell proliferation, cell dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 136 4  شماره 

صفحات  -

تاریخ انتشار 2004