Kinetic analysis of mitotic spindle elongation in vitro.

نویسندگان

  • T I Baskin
  • W Z Cande
چکیده

Studies of mitotic spindle elongation in vitro using populations of diatom spindles visualized with immunofluorescence microscopy have shown that the two interdigitating half-spindles are driven apart by an ATP-dependent process that generates force in the zone of overlap between half-spindles. To characterize further the system responsible for spindle elongation, we observed spindle elongation directly with polarized light or phase-contrast video-microscopy. We report that the kinetics of spindle elongation versus time are linear. A constant rate of spindle elongation occurs despite the continuous decrease in length of the zone of overlap between half-spindles. The average rate of spindle elongation varies as a function of treatment, and rates measured match spindle elongation rates measured in vivo. When spindles elongated in the presence of polymerizing tubulin (from bovine brain), the extent of elongation was greater than the original zone of half-spindle overlap, but the rate of elongation was constant. No component of force due to tubulin polymerization was found. The total elongation observed in the presence of added tubulin could exceed a doubling of original spindle length, matching the elongation in the intact diatom. The linear rate of spindle elongation in vitro suggests that the force transducer for anaphase B is a mechanochemical ATPase, analogous to dynein or myosin, and that the force for spindle elongation does not arise from stored energy, e.g. in an elastic matrix in the midzone. Additionally, on the basis of observations described here, we conclude that the force-transduction system for spindle elongation must be able to remain in the zone of microtubule overlap during the sliding apart of half-spindles, and that the transducer can generate force between microtubules that are not strictly antiparallel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation

We have identified an 80-kD protein that is involved in mitotic spindle elongation in the diatom Cylindrotheca fusiformis. DSK1 (Diatom Spindle Kinesin 1) was isolated using a peptide antibody raised against a conserved region in the motor domain of the kinesin superfamily. By sequence homology, DSK1 belongs to the central motor family of kinesin-related proteins. Immunoblots using an antibody ...

متن کامل

Ultrastructural Analysis of Mitotic Spindle Elongation in Mammalian Cells in Vitro

The mitotic spindle of many mammalian cells undergoes an abrupt elongation at anaphase. In both cultured rat kangaroo (strain PtK(1)) and Chinese hamster (strain Don-C) fibroblasts, the distance from pole to pole at metaphase doubles during anaphase and telophase. In order to determine the organization and distribution of spindle microtubules during the elongation process, cells were fixed and ...

متن کامل

Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro

We have developed a simple procedure for isolating mitotic spindles from the diatom Stephanopyxis turris and have shown that they undergo anaphase spindle elongation in vitro upon addition of ATP. The isolated central spindle is a barrel-shaped structure with a prominent zone of microtubule overlap. After ATP addition greater than 75% of the spindle population undergoes distinct structural rear...

متن کامل

The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A.

The kinesin-like protein CENP-E transiently associates with kinetochores following nuclear envelope breakdown in late prophase, remains bound throughout metaphase, but sometime after anaphase onset it releases and by telophase becomes bound to interzonal microtubules of the mitotic spindle. Inhibition of poleward chromosome movement in vitro by CENP-E antibodies and association of CENP-E with m...

متن کامل

Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 97 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1990