Likelihood-based inference for probabilistic graphical models: Some preliminary results

نویسنده

  • Marco E. G. V. Cattaneo
چکیده

A method for calculating some profile likelihood inferences in probabilistic graphical models is presented and applied to the problem of classification. It can also be interpreted as a method for obtaining inferences from hierarchical networks, a kind of imprecise probabilistic graphical models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Pitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution

In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Applying Search Based Probabilistic Inference Algorithms to Probabilistic Conformant Planning: Preliminary Results

Probabilistic conformant planning problems can be solved by probabilistic inference algorithms after translating their PPDDL specifications into graphical models. We present two translation schemes that convert probabilistic conformant planning problems as graphical models. The first encoding is based on the probabilistic extension of the serial encoding of PDDL in SatPlan, and the second encod...

متن کامل

Learning Cost-Aware, Loss-Aware Approximate Inference Policies for Probabilistic Graphical Models

Probabilistic graphical models are typically trained to maximize the likelihood of the training data and evaluated on some measure of accuracy on the test data. However, we are also interested in learning to produce predictions quickly. For example, one can speed up loopy belief propagation by choosing sparser models and by stopping at some point before convergence. We manage the speed-accuracy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010