Consistent Partial Least Squares Path Modeling via Regularization
نویسندگان
چکیده
Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
منابع مشابه
Component-based Predictive and Exploratory Path Modeling and Multi-block Data Analysis
This discussion paper will focus on the predictive modeling of relationships between latent variables in a multi-block data framework. We will refer to component-based methods such as Partial Least Squares Path Modelling, Generalized Structured Component Analysis as well as to some of their recent variants and other alternatives. We will compare these approaches by paying particular attention t...
متن کاملConsistent Partial Least Squares Path Modeling
This paper resumes the discussion in information systems research on the use of partial least squares (PLS) path modeling and shows that the inconsistency of PLS path coefficient estimates in the case of reflective measurement can have adverse consequences for hypothesis testing. To remedy this, the study introduces a vital extension of PLS: consistent PLS (PLSc). PLSc provides a correction for...
متن کاملControlling for Common Method Variance with Partial Least Squares Path modeling: A Monte Carlo Study
متن کامل
On the convergence of the partial least squares path modeling algorithm
This paper adds to an important aspect of Partial Least Squares (PLS) path modeling, namely the convergence of the iterative PLS path modeling algorithm. Whilst conventional wisdom says that PLS always converges in practice, there is no formal proof for path models with more than two blocks of manifest variables. This paper presents six cases of non-convergence of the PLS path modeling algorith...
متن کاملGoodness-of-fit indices for partial least squares path modeling
This paper discusses a recent development in partial least squares (PLS) path modeling, namely goodness-of-fit indices. In order to illustrate the behavior of the goodness-of-fit index (GoF) and the relative goodness-of-fit index (GoFrel), we estimate PLS path models with simulated data, and contrast their values with fit indices commonly used in covariance-based structural equation modeling. T...
متن کامل