Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques
نویسنده
چکیده
Alzheimer's disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP), insulysin and matrix metalloproteinases (MMP) are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 μm thick) were sectioned from adult (9 month old) wildtype and transgenic mice (expressing amyloid precursor protein (APP) harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI) and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 μg/ml of NEP, insulysin, MMP-2, or MMP-9 showed that NEP, insulysin, and MMP-9 markedly degraded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.
منابع مشابه
Green-Fluorescent Protein+ Astrocytes Attach to Beta-Amyloid Plaques in an Alzheimer Mouse Model and Are Sensitive for Clasmatodendrosis
Alzheimer's disease (AD) is pathologically characterized by beta-amyloid (Aβ) plaques and Tau pathology. It is well-established that Aβ plaques are surrounded by reactive astrocytes, highly expressing glial fibrillary acidic protein (GFAP). In order to study the cellular interaction of reactive astrocytes with Aβ plaques, we crossbred mice overexpressing amyloid precursor protein (APP) with the...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملThiazine Red+ platelet inclusions in Cerebral Blood Vessels are first signs in an Alzheimer’s Disease mouse model
Strong evidence shows an association between cerebral vascular diseases and Alzheimer´s disease (AD). In order to study the interaction of beta-amyloid (Aβ) plaques with brain vessels, we crossbred an AD mouse model (overexpressing amyloid precursor protein with the Swedish-Dutch-Iowa mutations, APP_SweDI) with mice expressing green fluorescent protein (GFP) under the flt-1/VEGFR1 promoter in v...
متن کاملPlatelets in the Alzheimer's Disease Brain: do they Play a Role in Cerebral Amyloid Angiopathy?
Alzheimer's disease (AD) is characterized by extracellular beta-amyloid plaques and intracellular tau tangles. AD-related pathology is often accompanied by vascular changes. The predominant vascular lesions in AD are cerebral amyloid angiopathy (CAA) and arteriosclerosis. Platelets circulate along the vessel wall responding immediately to vascular injury. The aim of the present study was to exp...
متن کاملP 119: Role of Gut Bacteria on Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disease that is the most common type of dementia.AD includes 60_80% of dementia and most people with AD have more than 65 years old.AD causes losing neuronal activity by abnormal proteins. Plaques of beta-amyloid and tangles of “tau” protein can lead to AD. Recently evidence has found that AD may come from outside of central nerv...
متن کامل