HMM/GMM classification for articulation disorder correction among algerian children
نویسندگان
چکیده
In this paper, we propose an automatic classification for Arabic phonemic substitution using a Hidden Markov Model/Gaussian Mixture Model (HMM/GMM) systems. The main objective is to help Algerian children in the correction of articulation problems. Five cases are analyzed in the experiments, 20 Arabic words are recorded by a 20 Algerian children, with age range between 4 and 6 years old. Signals are recorded and stored as wave format with 16kHz as sampling rate, 12 Mel Frequency Cepstral Coefficients (MFCC), with their first and second derivates, respectively ∆ and ∆∆ are extracted from each signal and used to the training and recognition phases. The proposed system achieved its best accuracy recognition 85.73%, with 5-stats HMM when the output function is modelled by a GMM with 8Gaussian components.
منابع مشابه
Feature Extraction and Classification for Automatic Speaker Recognition System – A Review
Automatic speaker recognition (ASR) has found immense applications in the industries like banking, security, forensics etc. for its advantages such as easy implementation, more secure, more user friendly. To have a good recognition rate is a pre-requisite for any ASR system which can be achieved by making an optimal choice among the available techniques for ASR. In this paper, different techniq...
متن کاملNoise-Robust Hidden Markov Models for Limited Training Data for Within-Species Bird Phrase Classification
Hidden Markov Models (HMMs) have been studied and used extensively in speech and birdsong recognition, but they are not robust to limited training data and noise. This paper presents two novel approaches to training continuous and discrete HMMs with extremely limited data. First, the algorithm learns the global Gaussian Mixture Models (GMMs) for all training phrases available. GMM parameters ar...
متن کاملRecognizing Dysarthric Speech due to Amyotrophic Lateral Sclerosis with Across-Speaker Articulatory Normalization
Recent dysarthric speech recognition studies using mixed data from a collection of neurological diseases suggested articulatory data can help to improve the speech recognition performance. This project was specifically designed for the speakerindependent recognition of dysarthric speech due to amyotrophic lateral sclerosis (ALS) using articulatory data. In this paper, we investigated three acro...
متن کاملA study on robust detection of pronunciation erroneous tendency based on deep neural network
Compared with scoring feedbacks, instructive feedbacks are more demanded by language learners using computer aided pronunciation training (CAPT) systems, which require detailed information about erroneous pronunciations along with phone errors. Pronunciation erroneous tendency (PET) defines a set of incorrect articulation configurations regarding main articulators and uttering manners for the p...
متن کاملPerformance Comparison of Gmm, Hmm and Dnn Based Approaches for Acoustic Event Detection within Task 3 of the Dcase 2016 Challenge
This contribution reports on the performance of systems for polyphonic acoustic event detection (AED) compared within the framework of the “detection and classification of acoustic scenes and events 2016” (DCASE’16) challenge. State-of-the-art Gaussian mixture model (GMM) and GMM-hidden Markov model (HMM) approaches are applied using Mel-frequency cepstral coefficients (MFCCs) and Gabor filterb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016