CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.

نویسندگان

  • Akira Kudo
  • Stephen A Steiner
  • Bernhard C Bayer
  • Piran R Kidambi
  • Stephan Hofmann
  • Michael S Strano
  • Brian L Wardle
چکیده

By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of CNTs over Fe–Co/Nanometric TiO2 Catalyst by CVD: The Effects of Catalyst Composition and Growth Temperature

   In this research carbon nanotubes were produced by chemical vapor deposition of acetylene over a mixture of iron and cobalt catalysts supported on nanometric TiO2 and the influences of two synthesis parameters: growth temperature and catalyst composition ratio on properties of end-product carbon nanotubes were investigated. The catalytic basis was prepared by wet impregnation ...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Optimization of continual production of CNTs by CVD method using Radial Basic Function (RBF) neural network and the Bees Algorithm

Optimization of continuous synthesis of high purity carbon nanotubes (CNTs) using chemical vapour deposition (CVD) method was studied experimentally and theoretically. Iron pentacarbonyl (Fe(CO)5), acetylene (C2H2) and Ar were used as the catalyst source, carbon source and carrier gas respectively. The synthesis temperature and flow rates of Ar and acetylene were optimized to produce CNTs at a ...

متن کامل

Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperat...

متن کامل

Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate

Chemical Vapor Deposition (CVD) is one of the most important methods for producing Carbon Nanotubes (CNTs). In this research, a numerical model, based on finite volume method, is investigated. The applied method solves the conservation of mass, momentum, energy and species transport equations with aid of ideal gas law. Using this model, the growth rate and thickness uniformity of produced CNTs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 51  شماره 

صفحات  -

تاریخ انتشار 2014