Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.

نویسندگان

  • Shouyi Wang
  • Stephen R Bowen
  • W Art Chaovalitwongse
  • George A Sandison
  • Thomas J Grabowski
  • Paul E Kinahan
چکیده

The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Motion Correction Methods in PET

With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...

متن کامل

The Efficiency of Respiratory-gated 18F-FDG PET/CT in Lung Adenocarcinoma: Amplitude-gating Versus Phase-gating Methods

Objective(s): In positron emission tomography (PET) studies, thoracic movement under free-breathing conditions is a cause of image degradation. Respiratory gating (RG) is commonly used to solve this problem. Two different methods, i.e., phase-gating (PG) and amplitude-gating (AG) PET, are available for respiratory gating. It is important to know the strengths and weaknesses of both methods when...

متن کامل

PET/CT in non-small-cell lung cancer: value of respiratory-gated PET.

The use of PET in the staging of patients with NSCLC is cost-effective, mainly due to a reduction in the number of futile operations. The addition of SUVmax to pathologic tumor size identifies a subgroup of patients at highest risk for death as a result of recurrent disease after resection. Tumor staging is more accurate with PET-CT than with CT alone or with PET alone. The greatest source of e...

متن کامل

Feasibility of Systematic Respiratory-Gated Acquisition in Unselected Patients Referred for 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

Objective Respiratory motion in 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) induces blurred images, leading to errors in location and quantification for lung and abdominal lesions. Various methods have been developed to correct for these artifacts, and most of current PET/CT scanners are equipped with a respiratory gating system. However, they are not ro...

متن کامل

Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI

Accurate localization and uptake quantification of lesions in the chest and abdomen using PET imaging is challenged by respiratory motion occurring during the exam. This work describes how a stack-of-stars MRI acquisition on integrated PET/MRI systems can be used to derive a high-resolution motion model, how many respiratory phases need to be differentiated, how much MRI scan time is required, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2014