Novel influenza virus NS1 antagonists block replication and restore innate immune function.
نویسندگان
چکیده
The innate immune system guards against virus infection through a variety of mechanisms including mobilization of the host interferon system, which attacks viral products mainly at a posttranscriptional level. The influenza virus NS1 protein is a multifunctional facilitator of virus replication, one of whose actions is to antagonize the interferon response. Since NS1 is required for efficient virus replication, it was reasoned that chemical inhibitors of this protein could be used to further understand virus-host interactions and also serve as potential new antiviral agents. A yeast-based assay was developed to identify compounds that phenotypically suppress NS1 function. Several such compounds exhibited significant activity specifically against influenza A virus in cell culture but had no effect on the replication of another RNA virus, respiratory syncytial virus. Interestingly, cells lacking an interferon response were drug resistant, suggesting that the compounds block interactions between NS1 and the interferon system. Accordingly, the compounds reversed the inhibition of beta interferon mRNA induction during infection, which is known to be caused by NS1. In addition, the compounds blocked the ability of NS1 protein to inhibit double-stranded RNA-dependent activation of a transfected beta interferon promoter construct. The effects of the compounds were specific to NS1, because they had no effect on the ability of the severe acute respiratory syndrome coronavirus papainlike protease protein to block beta interferon promoter activation. These data demonstrate that the function of NS1 can be modulated by chemical inhibitors and that such inhibitors will be useful as probes of biological function and as starting points for clinical drug development.
منابع مشابه
Inefficient control of host gene expression by the 2009 pandemic H1N1 influenza A virus NS1 protein.
In 2009, a novel swine-origin H1N1 influenza A virus emerged. Here, we characterize the multifunctional NS1 protein of this human pandemic virus in order to understand factors that may contribute to replication efficiency or pathogenicity. Although the 2009 H1N1 virus NS1 protein (2009/NS1) is an effective interferon antagonist, we found that this NS1 (unlike those of previous human-adapted inf...
متن کاملInhibition of host innate immune responses and pathogenicity of recombinant Newcastle disease viruses expressing NS1 genes of influenza A viruses.
The NS1 protein has been associated with the virulence of influenza A viruses. To evaluate the role of the NS1 protein in pathogenicity of pandemic H5N1 avian influenza and H1N1 2009 influenza viruses, recombinant Newcastle disease viruses (rNDVs) expressing NS1 proteins were generated. Expression of the NS1 proteins resulted in inhibition of host innate immune responses (beta interferon and pr...
متن کاملNetworks of Host Factors that Interact with NS1 Protein of Influenza A Virus
Pigs are an important host of influenza A viruses due to their ability to generate reassortant viruses with pandemic potential. NS1 protein of influenza A viruses is a key virulence factor and a major antagonist of innate immune responses. It is also involved in enhancing viral mRNA translation and regulation of virus replication. Being a protein with pleiotropic functions, NS1 has a variety of...
متن کاملCutting edge: stealth influenza virus replication precedes the initiation of adaptive immunity.
A timely immune response is crucial for the effective control of virus infection. The influenza virus NS1 protein interferes with the expression of key proinflammatory cytokines from infected cells in vitro. To investigate the effect of NS1 during the onset of immunity in vivo, we systematically studied the early events that occur in the lungs and draining lymph nodes upon infection with influe...
متن کاملA Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon
Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN) is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2009