Toward Abstractive Summarization Using Semantic Representations
نویسندگان
چکیده
We present a novel abstractive summarization framework that draws on the recent development of a treebank for the Abstract Meaning Representation (AMR). In this framework, the source text is parsed to a set of AMR graphs, the graphs are transformed into a summary graph, and then text is generated from the summary graph. We focus on the graph-tograph transformation that reduces the source semantic graph into a summary graph, making use of an existing AMR parser and assuming the eventual availability of an AMR-totext generator. The framework is data-driven, trainable, and not specifically designed for a particular domain. Experiments on goldstandard AMR annotations and system parses show promising results. Code is available at: https://github.com/summarization
منابع مشابه
Multilingual Natural Language Generation within Abstractive Summarization
With the tremendous amount of textual data available in the Internet, techniques for abstractive text summarization become increasingly appreciated. In this paper, we present work in progress that tackles the problem of multilingual text summarization using semantic representations. Our system is based on abstract linguistic structures obtained from an analysis pipeline of disambiguation, synta...
متن کاملAbstractive News Summarization based on Event Semantic Link Network
This paper studies the abstractive multi-document summarization for event-oriented news texts through event information extraction and abstract representation. Fine-grained event mentions and semantic relations between them are extracted to build a unified and connected event semantic link network, an abstract representation of source texts. A network reduction algorithm is proposed to summariz...
متن کاملFramework for Abstractive Summarization using Text-to-Text Generation
We propose a new, ambitious framework for abstractive summarization, which aims at selecting the content of a summary not from sentences, but from an abstract representation of the source documents. This abstract representation relies on the concept of Information Items (INIT), which we define as the smallest element of coherent information in a text or a sentence. Our framework differs from pr...
متن کاملAbstractive Multi-document Summarization with Semantic Information Extraction
This paper proposes a novel approach to generate abstractive summary for multiple documents by extracting semantic information from texts. The concept of Basic Semantic Unit (BSU) is defined to describe the semantics of an event or action. A semantic link network on BSUs is constructed to capture the semantic information of texts. Summary structure is planned with sentences generated based on t...
متن کاملA Review on Abstractive Summarization Methods
Text summarization is the process of extracting salient information from the source text and to present that information to the user in the form of summary. It is very difficult for human beings to manually summarize large documents of text. Automatic abstractive summarization provides the required solution but it is a challenging task because it requires deeper analysis of text. In this paper,...
متن کامل