Chance-Constrained Binary Packing Problems
نویسندگان
چکیده
We consider a class of packing problems with uncertain data, which we refer to as the chance-constrained binary packing problem. In this problem, a subset of items is selected that maximizes the total profit so that a generic packing constraint is satisfied with high probability. Interesting special cases of our problem include chance-constrained knapsack and set packing problems with random coefficients. We propose a problem formulation in its original space based on the so-called probabilistic covers. We focus our solution approaches on the special case in which the uncertainty is represented by a finite number of scenarios. In this case, the problem can be formulated as an integer program by introducing a binary decision variable to represent feasibility of each scenario. We derive a computationally efficient coefficient strengthening procedure for this formulation, and demonstrate how the scenario variables can be efficiently projected out of the linear programming relaxation. We also study how methods for lifting deterministic cover inequalities can be leveraged to perform approximate lifting of probabilistic cover inequalities. We conduct an extensive computational study to illustrate the potential benefits of our proposed techniques on various problem classes.
منابع مشابه
Packing, Partitioning, and Covering Symresacks
In this paper, we consider symmetric binary programs that contain set packing, partitioning, or covering (ppc) inequalities. To handle symmetries as well as ppc-constraints simultaneously, we introduce constrained symresacks which are the convex hull of all binary points that are lexicographically not smaller than their image w.r.t. a coordinate permutation and which fulfill some ppc-constraint...
متن کاملA chance-constrained stochastic approach to intermodal container routing problems
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service ...
متن کاملAn Approximate 0-1 Edge-Labeling Algorithm for Constrained Bin-Packing Problem
This paper describes a constrained bin-packing •problem (CBPP) and an approximate, anytime algor i thm for solutions. A CBPP is a constrained version of the bin-packing problem, in which a set of items allocated to a bin are ordered in a way to satisfy constraints defined on them and achieve near-optimality. The algor i thm for CBPP uses a heuristic search for labeling edges w i th a binary val...
متن کاملA Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning
The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...
متن کاملSolving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities
We study a complex class of stochastic programming problems involving a joint chance constraint with random technology matrix and stochastic quadratic inequalities. We present a basic mixedinteger nonlinear reformulation based on Boolean modeling and derive several variants of it. We present detailed empirical results comparing the various reformulations and several easy to implement algorithmi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- INFORMS Journal on Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2014