Self-assembly of fully addressable DNA nanostructures from double crossover tiles
نویسندگان
چکیده
DNA origami and single-stranded tile (SST) are two proven approaches to self-assemble finite-size complex DNA nanostructures. The construction elements appeared in structures from these two methods can also be found in multi-stranded DNA tiles such as double crossover tiles. Here we report the design and observation of four types of finite-size lattices with four different double crossover tiles, respectively, which, we believe, in terms of both complexity and robustness, will be rival to DNA origami and SST structures.
منابع مشابه
Parallel Molecular Computations of pair-wise XOR using DNA “String Tile” Self- Assembly
DNA computing 1 potentially provides a degree of parallelism far beyond that of conventional silicon-based computers. A number of researchers 2 have experimentally demonstrated DNA computing in solving instances of the satisfiability problems. Self-assembly of DNA nanostructures is theoretically an efficient method of executing parallel computation where information is encoded in DNA tiles and ...
متن کاملSelf-Assembled DNA Nanotubes
DNA, well-known as the predominant molecule for storage of genetic information in biology and biochemistry, has also been recognized as a useful building material in the field of nanotechnology. DNA provides basic building blocks for constructing functionalized nanostructures with four major features: molecular recognition, self-assembly, programmability, and predictable nanoscale geometry. The...
متن کاملHeat-resistant DNA tile arrays constructed by template-directed photoligation through 5-carboxyvinyl-2′-deoxyuridine
Template-directed DNA photoligation has been applied to a method to construct heat-resistant two-dimensional (2D) DNA arrays that can work as scaffolds in bottom-up assembly of functional biomolecules and nano-electronic components. DNA double-crossover AB-staggered (DXAB) tiles were covalently connected by enzyme-free template-directed photoligation, which enables a specific ligation reaction ...
متن کاملAlgorithmic Self-Assembly of DNA Sierpinski Triangles
Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Si...
متن کاملSelf-assembling DNA Nanostructures for Patterned Molecular Assembly
The Chapter describes the use of DNA for molecular-scale self-assembly. DNA-nanostructures provide a versatile toolbox with which to organize nanoscale materials. We begin with a discussion of DNA-nanostructures, starting with the self-assembly of various building-blocks known as DNA tiles. We describe how these can be made to self-assemble into two and threedimensional lattices. We discuss var...
متن کامل