Regularizing Neural Networks by Penalizing Confident Output Distributions
نویسندگان
چکیده
We systematically explore regularizing neural networks by penalizing low entropy output distributions. We show that penalizing low entropy output distributions, which has been shown to improve exploration in reinforcement learning, acts as a strong regularizer in supervised learning. Furthermore, we connect a maximum entropy based confidence penalty to label smoothing through the direction of the KL divergence. We exhaustively evaluate the proposed confidence penalty and label smoothing on 6 common benchmarks: image classification (MNIST and Cifar-10), language modeling (Penn Treebank), machine translation (WMT’14 English-to-German), and speech recognition (TIMIT and WSJ). We find that both label smoothing and the confidence penalty improve state-of-the-art models across benchmarks without modifying existing hyperparameters, suggesting the wide applicability of these regularizers.
منابع مشابه
Regularizing Neural Networks via Retaining Confident Connections
Regularization of neural networks can alleviate overfitting in the training phase. Current regularization methods, such as Dropout and DropConnect, randomly drop neural nodes or connections based on a uniform prior. Such a data-independent strategy does not take into consideration of the quality of individual unit or connection. In this paper, we aim to develop a data-dependent approach to regu...
متن کاملRegularizing RNNs by Stabilizing Activations
We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the squared distance between successive hidden states’ norms. This penalty term is an effective regularizer for RNNs including LSTMs and IRNNs, improving performance on character-level language modelling and phoneme recognition, and outperforming weight noise and dropout. We achieve state of the art performance (17.5...
متن کاملAdding noise to the input of a model trained with a regularized objective
Regularization is a well studied problem in the context of neural networks. It is usually used to improve the generalization performance when the number of input samples is relatively small or heavily contaminated with noise. The regularization of a parametric model can be achieved in different manners some of which are early stopping (Morgan and Bourlard, 1990), weight decay, output smoothing ...
متن کاملRegularizing Deep Hashing Networks Using GAN Generated Fake Images
Recently, deep-networks-based hashing (deep hashing) has become a leading approach for large-scale image retrieval. It aims to learn a compact bitwise representation for images via deep networks, so that similar images are mapped to nearby hash codes. Since a deep network model usually has a large number of parameters, it may probably be too complicated for the training data we have, leading to...
متن کاملRight for the Right Reasons: Training Differentiable Models by Constraining their Explanations
Neural networks are among the most accurate supervised learning methods in use today, but their opacity makes them difficult to trust in critical applications, especially when conditions in training differ from those in test. Recent work on explanations for black-box models has produced tools (e.g. LIME) to show the implicit rules behind predictions, which can help us identify when models are r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.06548 شماره
صفحات -
تاریخ انتشار 2017