Plasma Characterization of Pulsed-Laser Ablation Process Used for Fullerene-like CNx Thin Film Deposition
نویسندگان
چکیده
An in situ Optical Emission Spectroscopy (OES) characterization was performed on Pulsed-Laser Ablation (PLA) process used for fullerene-like CNx thin film deposition at nitrogen pressures within the 5 – 100 mTorr range. Plumes were generated by ablation of pyrolytic graphite (99.99%) target using a (500 mJ, 7 ns, 1064 nm) Nd: YAG-pulsed laser. The spectra from the plume show, essentially, the presence of the band heads of CN Violet vibrational/rotational BΣXΣ system and the characteristic C2 emission lines, belonging to the Swan AΠg X’3Πu system. These excited CN and C2 molecules were generated by laser ablation and by collisions of the plume with the substrate surface. Their vibrational temperatures were strongly dependent on nitrogen pressure during the deposition process and presented a decrease between 2.64 and 1.23 eV, as pressure increased from 5 to 100 mTorr. Synthesis of fullerene-like structures required high molecular temperatures at the condensation surface. High concentrations of CN radicals in the plasma promoted nitrogen incorporation into the films. The OES plasma characterization allowed for a correlation of the concentration and vibrational temperatures of CN and C2 species present in the plasma with the fullerene-like CNx film composition and bonding, determined by XPS, IR, and Raman spectroscopy.
منابع مشابه
Synthesis and characterization of a-CNx thin films prepared by laser ablation
Amorphous carbon nitride (a-CNx) thin films were synthesized by laser ablation on silicon (100) and glass substrates. The plasma was produced using the fundamental line of a Nd:YAG laser with 28 ns pulse duration focused on a graphite target. Deposition of a-CN films was carried out in a nitrogen atmosphere in the range of pressures from 3 x 10 to 1.5 x 10 Torr. The laser fluences used in this ...
متن کاملCharacterization of nanostructured SnO2 thin film coated by Ag nanoparticles
Nanostructured SnO2 thin films were prepared using Electron Beam-Physical Vapor Deposition (EB-PVD) technique. Then Ag nanoparticles synthesized by laser-pulsed ablation were sprayed on the films. In order to form a homogenous coated of SnO2 on the glass surface, it was thermally treated at 500°C for 1 h. At this stage, the combined layer on the substrate was completely dried for 8 h in the air...
متن کاملFullerene-like CNx and CPx Thin Films; Synthesis, Modeling, and Applications
This Thesis concerns the development of fullerene-like (FL) carbon nitride (CNx) thin films and the discovery of phosphorus-carbide (CPx) compounds. The work dedicated to CPx include first-principles theoretical simulations of the growth and properties of FL–CPx structures. I have employed DC magnetron sputtering methods to synthesize both CNx and CPx thin films. The deposition conditions for C...
متن کاملProcess Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملPulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization
This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...
متن کامل