eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE−/− Mice
نویسندگان
چکیده
BACKGROUND All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. PRINCIPAL FINDINGS Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE(-/-)/eNOS(-/-)), while P/E-interactions did not differ, compared to apoE(-/-). eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE(-/-) vessels. CONCLUSION Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE(-/-)/eNOS(-/-) vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE(-/-) atherosclerosis but does not negate the enzyme's strong protective effects.
منابع مشابه
A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression.
OBJECTIVE When the availability of tetrahydrobiopterin (BH4) is deficient, endothelial nitric oxide synthase (eNOS) produces superoxide rather than NO (uncoupled eNOS). We have shown that the atherosclerotic lesion size was augmented in apolipoprotein E-deficient (ApoE-KO) mice overexpressing eNOS because of the enhanced superoxide production. In this study, we addressed the specific importance...
متن کاملOverexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice.
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is regarded as a protective factor against atherosclerosis. Therefore, augmentation of eNOS expression or NO production by pharmacological intervention is postulated to inhibit atherosclerosis. We crossed eNOS-overexpressing (eNOS-Tg) mice with atherogenic apoE-deficient (apoE-KO) mice to determine whether eNOS overexpression in the ...
متن کاملIncreased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice.
OBJECTIVE Increased production of reactive oxygen species and loss of endothelial nitric oxide (NO) bioactivity are key features of vascular disease states such as atherosclerosis. Tetrahydrobiopterin (BH4) is a required cofactor for NO synthesis by endothelial nitric oxide synthase (eNOS); pharmacologic studies suggest that reduced BH4 availability may be an important mediator of endothelial d...
متن کاملEndothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin.
BACKGROUND Altered endothelial cell nitric oxide (NO(*)) production in atherosclerosis may be due to a reduction of intracellular tetrahydrobiopterin, which is a critical cofactor for NO synthase (NOS). In addition, previous literature suggests that inactivation of NO(*) by increased vascular production superoxide (O(2)(*-)) also reduces NO(*) bioactivity in several disease states. We sought to...
متن کاملSIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice
Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function...
متن کامل