Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

نویسندگان

  • Nicola A. McEnroe
  • Clayton J. Williams
  • Marguerite A. Xenopoulos
  • Petr Porcal
  • Paul C. Frost
چکیده

Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay

The role of tidal marshes as a source of dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) for adjacent estuarine waters was studied in the Rhode River subestuary of the Chesapeake Bay. Water in a tidal creek draining brackish, high-elevation marshes was sampled every hour during several semidiurnal tidal cycles in order to examine the tidal exchange of dissolved organi...

متن کامل

Effects of sumithion on growth and production of phytoplankton and zooplankton in aquaculture ponds

Sumithion is an organophosphorous pesticide widely used to control tiger bug in the fish larval rearing pond. The present study was aimed to investigate the effects of sumithion on plankton population abundance in aquaculture pond. The experiment was carried out with three treatments, i.e., ponds with no sumithion (T1), with 1.0 ppm sumithion (T2) and 2.0 ppm sumithion (T3). The water quality p...

متن کامل

Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes

Remote lakes are usually unaffected by direct human influence, yet they receive inputs of atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine lakes, these atmospheric inputs may influence the pool of dissolved organic matter, a critical constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this influence, we evaluate fa...

متن کامل

Microbial community composition and function across an arctic tundra landscape.

Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, low...

متن کامل

Diversity and metabolism of marine bacteria cultivated on dissolved DNA.

Dissolved DNA (dDNA) is a potentially important source of energy and nutrients in aquatic ecosystems. However, little is known about the identity, metabolism, and interactions of the microorganisms capable of consuming dDNA. Bacteria from Eel Pond (Woods Hole, MA) were cultivated on low-molecular-weight (LMW) or high-molecular-weight (HMW) dDNA, which served as the primary source of carbon, nit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013