Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

نویسندگان

  • F Loreto
  • G Bongi
چکیده

Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstomatal inhibition of photosynthesis at low water potentials in intact leaves of species from a variety of habitats.

Mesophyll resistance to CO(2) uptake was calculated from gas exchange data on intact leaves of 12 species of woody plants. Plants studied were native to habitats ranging from streamsides to deserts. Gas exchange measurements were made at light saturation and constant temperature to eliminate possible effects of light and temperature on estimates of mesophyll resistance. Cuticular transpiration ...

متن کامل

Hydrocracking of Jojoba Oil for Green Fuel Production

The fast depletion of petroleum crude oil reserves and the serious consideration of environmental issues make the implementation of sustainable energy sources a crucial issue worldwide. Biofuel derived from vegetable oils is receiving a great attention as one of the most suitable and logical alternatives of fossil fuels. Therefore, the production of petroleum-like fractions from nonedible oil e...

متن کامل

Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation.

Effects of growth temperature and irradiance on nitrogen partitioning among photosynthetic components were studied. Plantago asiatica was grown under different temperature and light conditions. Growth conditions were regulated such that the Chl a/b ratio in leaves grown at a low temperature with a low irradiance was similar to that in leaves grown at a high temperature with a high irradiance, s...

متن کامل

Ecophysiology of two Sonoran Desert evergreen shrubs during extreme drought

Recent drought across the desert Southwest US may strongly affect the physiological functioning of evergreen desert species that maintain leaves through these dry periods. In July 2002 we compared the ecophysiological performance of the open-canopied, small-leaved creosotebush (Larrea tridentata) to the dense-canopied, more broad-leaved jojoba (Simmondsia chinensis) growing on a ridge-top, east...

متن کامل

Short-Term Effects of CO(2) on Gas Exchange of Leaves of Bigtooth Aspen (Populus grandidentata) in the Field.

The short term effects of increased levels of CO(2) on gas exchange of leaves of bigtooth aspen (Populus grandidentata Michx.) were studied at the University of Michigan Biological Station, Pellston, MI. Leaf gas exchange was measured in situ in the upper half of the canopy, 12 to 14 meters above ground. In 1900 microliters per liter CO(2), maximum CO(2) exchange rate (CER) in saturating light ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 1989