Fixed-outline floorplanning: enabling hierarchical design
نویسندگان
چکیده
Classical floorplanning minimizes a linear combination of area and wirelength. When Simulated Annealing is used, e.g., with the Sequence Pair representation, the typical choice of moves is fairly straightforward. In this work, we study the fixed-outline floorplan formulation that is more relevant to hierarchical design style and is justified for very large ASICs and SoCs. We empirically show that instances of the fixed-outline floorplan problem are significantly harder than related instances of classical floorplan problems. We suggest new objective functions to drive simulated annealing and new types of moves that better guide local search in the new context. Wirelength improvements and optimization of aspect ratios of soft blocks are explicitly addressed by these techniques. Our proposed moves are based on the notion of floorplan slack. The proposed slack computation can be implemented with all existing algorithms to evaluate sequence pairs, of which we use the simplest, yet semantically indistinguishable from the fastest reported [28]. A similar slack computation is possible with many other floorplan representations. In all cases the computation time approximately doubles. Our empirical evaluation is based on a new floorplanner implementation Parquet-1 that can operate in both outline-free and fixed-outline modes. We use Parquet-1 to floorplan a design, with approximately 32000 cells, in 37 minutes using a top-down, hierarchical paradigm.
منابع مشابه
On Objective Functions for Fixed-Outline Floorplanning
-Fixed-outline floorplanning enables multilevel hierarchical design, where aspect ratios and area of floorplans are usually imposed by higher level floorplanning and must be satisfied. Simulated Annealing is widely used in the floorplanning problem. It is well-known that the solution space, solution perturbation, and objective function are very important for Simulated Annealing. In this paper, ...
متن کاملFixed-outline Floorplanning through Better Local Search
Classical floorplanning minimizes a linear combination of area and wirelength. When Simulated Annealing is used, e.g., with the Sequence Pair representation, the typical choice of moves is fairly straightforward. In this work, we study the fixed-outline floorplan formulation that is more relevant to hierarchical design style and is justified for very large ASICs and SOCs. We empirically show th...
متن کاملMusic-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning
Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Sear...
متن کاملA Survey of Various Metaheuristic Algorithms Used to Solve VLSI Floorplanning Problem
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Floorplanning is an important problem in very large scale integrated-circuit (VLSI) design automation as it determines the performance, size, yield, and reliability of VLSI chips. From the computational point of view, VLSI floorplanning is an NP-ha...
متن کاملLarge-Scale Fixed-Outline Floorplanning Design Using Convex Optimization
A two-stage optimization methodology is proposed to solve the fixed-outline floorplanning problem that is a global optimization problem for wirelength minimization. In the first stage, an attractor-repeller convex optimization model provides the relative positions of the modules on the floorplan. The second stage places and sizes the modules using second-order cone optimization. With the relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. VLSI Syst.
دوره 11 شماره
صفحات -
تاریخ انتشار 2003