Motion blur removal from photographs

نویسنده

  • Taeg Sang Cho
چکیده

One of the long-standing challenges in photography is motion blur. Blur artifacts are generated from relative motion between a camera and a scene during exposure. While blur can be reduced by using a shorter exposure, this comes at an unavoidable trade-off with increased noise. Therefore, it is desirable to remove blur computationally. To remove blur, we need to (i) estimate how the image is blurred (i.e. the blur kernel or the point-spread function) and (ii) restore a natural looking image through deconvolution. Blur kernel estimation is challenging because the algorithm needs to distinguish the correct image– blur pair from incorrect ones that can also adequately explain the blurred image. Deconvolution is also difficult because the algorithm needs to restore high frequency image contents attenuated by blur. In this dissertation, we address a few aspects of these challenges. We introduce an insight that a blur kernel can be estimated by analyzing edges in a blurred photograph. Edge profiles in a blurred image encode projections of the blur kernel, from which we can recover the blur using the inverse Radon transform. This method is computationally attractive and is well suited to images with many edges. Blurred edge profiles can also serve as additional cues for existing kernel estimation algorithms. We introduce a method to integrate this information into a maximum-a-posteriori kernel estimation framework, and show its benefits. Deconvolution algorithms restore information attenuated by blur using an image prior that exploits a heavy-tailed gradient profile of natural images. We show, however, that such a sparse prior does not accurately model textures, thereby degrading texture renditions in restored images. To address this issue, we introduce a content-aware image prior that adapts its characteristics to local textures. The adapted image prior improves the quality of textures in restored 6 images. Sometimes even the content-aware image prior may be insufficient for restoring rich textures. This issue can be addressed by matching the restored image’s gradient distribution to its original image’s gradient distribution, which is estimated directly from the blurred image. This new image deconvolution technique called iterative distribution reweighting (IDR) improves the visual realism of reconstructed images. Subject motion can also cause blur. Removing subject motion blur is especially challenging because the blur is often spatially variant. In this dissertation, we address a restricted class of subject motion blur: the subject moves at a constant velocity locally. We design a new computational camera that improves the local motion estimation and, at the same time, reduces the image information loss due to blur. Thesis Supervisor: William T. Freeman Title: Professor of Electrical Engineering and Computer Science

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing camera shake blur and unwanted occluders from photographs. (Restauration des images par l'élimination du flou et des occlusions)

This thesis investigates the removal of spatially-variant blur from photographs degraded by camera shake, and the removal of large occluding objects from photographs of popular places. We examine these problems in the case where the photographs are taken with standard consumer cameras, and we have no particular information about the scene being photographed. Most existing deblurring methods mod...

متن کامل

Single-Shot Image Deblurring with Modified Camera Optics

The recent rapid popularization of digital cameras allows people to capture a large number of digital photographs easily, and this situation makes automatic avoidance and correction of “failure” photographs important. While exposure and color issues have been mostly resolved by the improvement in automatic corrective functions of cameras, defocus, motion, and camera shake blur can be handled on...

متن کامل

Removing Camera Shake from a Single Photograph

Camera shake during exposure leads to objectionable image blur and ruins many photographs. Conventional blind deconvolution methods typically assume frequency-domain constraints on images, or overly simplified parametric forms for the motion path during camera shake. Real camera motions can follow convoluted paths, and a spatial domain prior can better maintain visually salient image characteri...

متن کامل

Motion blur removal in nonlinear sensors

We address the problem of motion blur removal from an image sequence that was acquired by a sensor with nonlinear response. Motion blur removal in purely linear settings has been studied extensively in the past. In practice however, sensors exhibit nonlinearities, which also need to be compensated for. In this paper we study the problem of joint motion blur removal and nonlinearity compensation...

متن کامل

Motion blur removal with orthogonal parabolic exposures Citation

Object movement during exposure generates blur. Removing blur is challenging because one has to estimate the motion blur, which can spatially vary over the image. Even if the motion is successfully identified, blur removal can be unstable because the blur kernel attenuates high frequency image contents. We address the problem of removing blur from objects moving at constant velocities in arbitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010