Information theory applied to the sparse gene ontology annotation network to predict novel gene function

نویسندگان

  • Ying Tao
  • Lee T. Sam
  • Jianrong Li
  • Carol Friedman
  • Yves A. Lussier
چکیده

MOTIVATION Despite advances in the gene annotation process, the functions of a large portion of gene products remain insufficiently characterized. In addition, the in silico prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or functional genomic approaches. To our knowledge, no prediction method has been demonstrated to be highly accurate for sparsely annotated GO terms (those associated to fewer than 10 genes). RESULTS We propose a novel approach, information theory-based semantic similarity (ITSS), to automatically predict molecular functions of genes based on existing GO annotations. Using a 10-fold cross-validation, we demonstrate that the ITSS algorithm obtains prediction accuracies (precision 97%, recall 77%) comparable to other machine learning algorithms when compared in similar conditions over densely annotated portions of the GO datasets. This method is able to generate highly accurate predictions in sparsely annotated portions of GO, where previous algorithms have failed. As a result, our technique generates an order of magnitude more functional predictions than previous methods. A 10-fold cross validation demonstrated a precision of 90% at a recall of 36% for the algorithm over sparsely annotated networks of the recent GO annotations (about 1400 GO terms and 11,000 genes in Homo sapiens). To our knowledge, this article presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions than more widely used cross-validation approaches. By manually assessing a random sample of 100 predictions conducted in a historical rollback evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43-58%) can be achieved for the human GO Annotation file dated 2003. AVAILABILITY The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset and other supplementary information is available at http://phenos.bsd.uchicago.edu/ITSS/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of a Number of Genes Affecting in Milk Production using Information Theory and Mutual Information

Information theory is a branch of mathematics. Information theory is used in genetic and bioinformatics analyses and can be used for many analyses related to the biological structures and sequences. Bio-computational grouping of genes facilitates genetic analysis, sequencing and structural-based analyses. In this study, after retrieving gene and exon DNA sequences affecting milk yield in dairy ...

متن کامل

Study of Gene Expression Signatures for the Diagnosis of Pediatric Acute Lymphoblastic Leukemia (ALL) Through Gene Expression Array Analyses

Background: Acute lymphoblastic leukemia (ALL) as the most common malignancy in children is associated with high mortality and significant relapse. Currently, the non-invasive diagnosis of pediatric ALL is a main challenge in the early detection of patients. In the present study, a systems biology approach was used through network-based analysis to identify the key candidate genes related to AL...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Construction of Ontology Augmented Networks for Protein Complex Prediction

Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2007