Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice.
نویسندگان
چکیده
Neurotrophin-4 (NT-4) knockout mice exhibited decreased innervation of the small intestine by vagal intraganglionic laminar endings (IGLEs) and reduced food satiation. Recent findings suggested this innervation was increased in NT-4 knock-in (NT-4KI) mice. Therefore, to further investigate the relationship between intestinal IGLEs and satiation, meal patterns were characterized using solid and liquid diets, and cholecystokinin (CCK) effects on 30-min solid diet intake were examined in NT-4KI and wild-type mice. NT-4KI mice consuming the solid diet exhibited reduced meal size, suggesting increased satiation. However, compensation occurred through increased meal frequency, maintaining daily food intake and body weight gain similar to controls. Mutants fed the liquid diet displayed a decrease in intake rate, again implying increased satiation, but meal duration increased, which led to an increase in meal size. This was compensated for by decreased meal frequency, resulting in similar daily food intake and weight gain as controls. Importantly, these alterations in NT-4KI mice were opposite, or different, from those of NT-4 knockout mice, further supporting the hypothesis that they are specific to vagal afferent signaling. CCK suppressed short-term intake in mutants and controls, but the mutants exhibited larger suppressions at lower doses, implying they were more sensitive to CCK. Moreover, devazepide prevented this suppression, indicating this increased sensitivity was mediated by CCK-1 receptors. These results suggest that the NT-4 gene knock-in, probably involving increased intestinal IGLE innervation, altered short-term feeding, in particular by enhancing satiation and sensitivity to CCK, whereas long-term control of daily intake and body weight was unaffected.
منابع مشابه
CALL FOR PAPERS Physiological Regulation of Appetite Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice
Chi, Michael M., Guoping Fan, and Edward A. Fox. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice. Am J Physiol Regul Integr Comp Physiol 287: R1044–R1053, 2004. First published August 5, 2004; doi: 10.1152/ajpregu.00420.2004.—Neurotrophin-4 (NT-4) knockout mice exhibited decreased innervation of the small intestine by vagal intraganglionic ...
متن کاملNeurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety.
Intraganglionic laminar endings (IGLEs) and intramuscular arrays (IMAs) are the two putative mechanoreceptors that the vagus nerve supplies to gastrointestinal smooth muscle. To examine whether neurotrophin-4 (NT-4)-deficient mice, which have only 45% of the normal number of nodose ganglion neurons, exhibit selective losses of these endings and potentially provide a model for assessing their fu...
متن کاملA high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice.
During digestion, macronutrients are sensed within the small intestine. This sensory process is dependent upon the action of gut mediators, such as cholecystokinin (CCK) or serotonin (5-HT), on vagal afferents that, in turn, convey peripheral information to the brain to influence the control of food intake. Recent studies have suggested that dietary conditions alter vagal sensitivity to CCK and...
متن کاملThe cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight.
Food intake and body weight are determined by a complex interaction of regulatory pathways. To elucidate the contribution of the endogenous peptide cholecystokinin, mice lacking functional cholecystokinin-A receptors were generated by targeted gene disruption. To explore the role of the cholecystokinin-A receptor in mediating satiety, food intake of cholecystokinin-A receptor-/- mice was compar...
متن کاملSynergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice.
Leptin is a circulating protein involved in the long-term regulation of food intake and body weight. Cholecystokinin (CCK) is released postprandially and elicits satiety signals. We investigated the interaction between leptin and CCK-8 in the short-term regulation of food intake induced by 24-hr fasting in lean mice. Leptin, injected intraperitoneally (i.p.) at low doses (4-120 microg/kg), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 287 5 شماره
صفحات -
تاریخ انتشار 2004