Temporal Segmentation of Facial Behavior in Static Images Using HOG & Piecewise Linear SVM
نویسنده
چکیده
Temporal segmentation of facial gestures in spontaneous facial behavior recorded in real-world settings is an important, unsolved, and relatively unexplored problem in facial image analysis. Several issues contribute to the challenge of this task. These include non-frontal pose, moderate to large out-of-plane head motion, large variability in the temporal scale of facial gestures, and the exponential nature of possible facial action combinations. To address these challenges, we propose a two-step approach to temporally segment facial behavior. The first step uses spectral graph techniques to cluster shape and appearance features invariant to some geometric transformations. The second step groups the clusters into temporally coherent facial gestures. We evaluated this method in facial behavior recorded during face-to-face interactions. The video data were originally collected to answer substantive questions in psychology without concern for algorithm development. The method achieved moderate convergent validity with manual FACS (Facial Action Coding System) annotation. Further, when used to preprocess video for manual FACS annotation, the method significantly improves productivity, thus addressing the need for ground-truth data for facial image analysis. Moreover, we were also able to detect unusual facial behavior. This paper consists of efficient facial detection in static images using Histogram of Oriented Gradients (HOG) for local feature extraction and linear piecewise support vector machine (PL-SVM) classifiers. Histogram of oriented gradient (HOG) gives an accurate description of the contour of image. HOG features are calculated by taking orientation of histogram of edge intensity in a local region. PL-SVM is nonlinear classifier that can discriminate multi-view and multi-posture from the images in high dimensional feature space. Each PL-SVM model forms the subspace, corresponding to the cluster of special view. This paper consists of comparison of PL-SVM and several recent SVM methods in terms of cross validation accuracy.
منابع مشابه
Implementation of Brain Tumor Detection using Segmentation Algorithm & SVM
In this paper, we implemented an automated system for brain tumor detection, the main functionality of this system is divided in some parts are Segmentation, Object Labeling, HOG (Histogram Oriented Gradient), feature extraction and linear SVM implementation. For Segmentation we are using K-means algorithm, for Object Labeling HOG is use, HOG also use to extract texture feature, shape context f...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملEmotion Detection Through Facial Feature Recognition
Humans share a universal and fundamental set of emotions which are exhibited through consistent facial expressions. An algorithm that performs detection, extraction, and evaluation of these facial expressions will allow for automatic recognition of human emotion in images and videos. Presented here is a hybrid feature extraction and facial expression recognition method that utilizes Viola-Jones...
متن کاملFacial Landmark Detection using Ensemble of Cascaded Regressions
This paper presents an ensemble of regressions approach for estimation of the positions of facial landmarks in frontal and near-frontal face images. Our approach learns three different cascades of regressors and fuses their predictions into one final precise estimate using Gradient Boosting Regression Trees (GBRT). The cascaded model starts from an approximate estimate of the landmark positions...
متن کاملRecognition of Sign and Text Using LVQ and SVM
Traffic Sign Recognition (TSR) is used to regulate traffic signs, warn a driver, and command or prohibit certain actions. Fast real-time and robust automatic traffic sign detection and recognition can support and disburden the driver and significantly increase driving safety and comfort. Automatic recognition of traffic signs is also important for an automated intelligent driving vehicle or for...
متن کامل