Multi-granularity distance metric learning via neighborhood granule margin maximization
نویسندگان
چکیده
Learning a distance metric from training samples is often a crucial step in machine learning and pattern recognition. Locality, compactness and consistency are considered as the key principles in distance metric learning. However, the existing metric learning methods just consider one or two of them. In this paper, we develop a multi-granularity distance learning technique. First, a new index, neighborhood granule margin, which simultaneously considers locality, compactness and consistency of neighborhood, is introduced to evaluate a distance metric. By maximizing neighborhood granule margin, we formulate the distance metric learning problem as a sample pair classification problem, which can be solved by standard support vector machine solvers. Then a set of distance metrics are learned in different granular spaces. The weights of the granular spaces are learned through optimizing the margin distribution. Finally, the decisions from different granular spaces are combined with weighted voting. Experiments on UCI datasets, gender classification and object categorization tasks show that the proposed method is superior to the state-of-the-art distance metric learning algorithms. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
A Scalable Algorithm for Learning a Mahalanobis Distance Metric
In this work, we propose a scalable and fast algorithm to learn a Mahalanobis distance metric. The key issue in this task is to learn an optimal Mahalanobis matrix in this distance metric. It has been shown in the statistical learning theory [?] that increasing the margin between different classes helps to reduce the generalization error. Hence, our algorithm formulates the Mahalanobis matrix a...
متن کاملAn Overview of Distance Metric Learning
In our previous comprehensive survey [41], we have categorized the disparate issues in distance metric learning. Within each of the four categories, we have summarized existing work, disclosed their essential connections, strengths and weaknesses. The first category is supervised distance metric learning, which contains supervised global distance metric learning, local adaptive supervised dista...
متن کاملAdaptive neighborhood granularity selection and combination based on margin distribution optimization
Granular computing aims to develop a granular view for interpreting and solving problems. The model of neighborhood rough sets is one of effective tools for granular computing. This model can deal with complex tasks of classification learning. Despite the success of the neighborhood model in attribute reduction and rule learning, it still suffers from the issue of granularity selection. Namely,...
متن کاملMetric Learning: A Support Vector Approach
In this paper, we address the metric learning problem utilizing a margin-based approach. Our metric learning problem is formulated as a quadratic semi-definite programming problem (QSDP) with local neighborhood constraints, which is based on the Support Vector Machine (SVM) framework. The local neighborhood constraints ensure that examples of the same class are separated from examples of differ...
متن کاملA Gradient-Based Metric Learning Algorithm for k-NN Classifiers
The Nearest Neighbor (NN) classification/regression techniques, besides their simplicity, are amongst the most widely applied and well studied techniques for pattern recognition in machine learning. A drawback, however, is the assumption of the availability of a suitable metric to measure distances to the k nearest neighbors. It has been shown that k-NN classifiers with a suitable distance metr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 282 شماره
صفحات -
تاریخ انتشار 2014