Explicit Optimal-Rate Non-malleable Codes Against Bit-wise Tampering and Permutations

نویسندگان

  • Shashank Agrawal
  • Divya Gupta
  • Hemanta K. Maji
  • Omkant Pandey
  • Manoj Prabhakaran
چکیده

A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area – apart from establishing the feasibility against different families of tampering – are to obtain explicit constructions and to obtain high-rates for such constructions. In this work, we present a compiler to transform low-rate (in fact, zero rate) non-malleable codes against certain class of tampering into an optimal-rate – i.e., rate 1 – non-malleable codes against the same class. If the original code is explicit, so is the new one. When applied to the family of bit-wise tampering functions, this subsumes (and greatly simplifies) a recent result of Cheraghchi and Guruswami (TCC 2014). Further, our compiler can be applied to non-malleable codes against the class of bit-wise tampering and bit-level permutations. Combined with the rate-0 construction in a companion work, this yields the first explicit rate-1 non-malleable code for this family of tampering functions. Our compiler uses a new technique for boot-strapping non-malleability by introducing errors, that may be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rate-Optimizing Compiler for Non-malleable Codes Against Bit-Wise Tampering and Permutations

A non-malleable code protects messages against a class of tampering functions. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area – apart from establishing the feasibility against different families of tampering – are to obtain expl...

متن کامل

Linear-Time Non-Malleable Codes in the Bit-Wise Independent Tampering Model

Non-malleable codes were introduced by Dziembowski et al. (ICS 2010) as coding schemes that protect a message against tampering attacks. Roughly speaking, a code is non-malleable if decoding an adversarially tampered encoding of a message m produces the original message m or a value m ′ (possibly ⊥) completely unrelated to m . It is known that non-malleability is possible only for restricted cl...

متن کامل

Explicit Non-malleable Codes Against Bit-Wise Tampering and Permutations

A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the message contained in a tampered codeword is either the original message, or a completely unrelated one. Although existence of such codes for various rich classes of tampering functions is known, explicit constructions exist only for “compartmentalized” tampering functions: i.e...

متن کامل

Explicit Non-malleable Codes Resistant to Permutations and Perturbations

A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the message contained in a tampered codeword is either the original message, or a completely unrelated one. Although existence of such codes for various rich classes of tampering functions is known, explicit constructions exist only for “compartmentalized” tampering functions: i.e...

متن کامل

Explicit Non-Malleable Codes Resistant to Permutations

The notion of non-malleable codes was introduced as a relaxation of standard error-correction and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. In the information theoretic setting, although existence of such codes for various rich classes of tampering functions is known, expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014