Regulation of dendritic branching by Cdc42 GAPs.
نویسندگان
چکیده
Nerve cells form elaborate, highly branched dendritic trees that are optimized for the receipt of synaptic signals. Recent work published in this issue of Genes & Development by Rosario and colleagues (pp. 1743-1757) shows that a Cdc42-specific GTPase-activating protein (NOMA-GAP) regulates the branching of dendrites by neurons in the top layers of the mouse cortex. The results raise interesting questions regarding the specification of arbors in different cortical layers and the mechanisms of dendrite branching.
منابع مشابه
Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin.
Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical develo...
متن کاملmiR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling.
The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neur...
متن کاملRegulation of dendritic development by Notch signaling
Dendritic patterning exerts a profound influence on neuronal connectivity. Recent studies indicate that mammalian Notch receptors are expressed by postmitotic neurons and that Notch signaling has a considerable influence on dendritic growth and branching. Investigations into the intracellular effectors of dendritic development have revealed that dendritic growth and branching are differentially...
متن کاملEvaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells
Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...
متن کاملEvaluation of the effect of dendritic branching on signal processing in hippocampus pyramidal cells
Since branching region of an active nerve fiber is an abrupt widening of the structure, two concepts emerge: first, the stimulating current must be sufficient to raise the outgrowing fibers above the thresh¬old, and secondly, the stimulating current will be divided in proportion to the characteristic admittance of the branches. On the other hand, blocking of the nerve impulse in this region is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 26 15 شماره
صفحات -
تاریخ انتشار 2012