Triangle Factors In Sparse Pseudo-Random Graphs
نویسندگان
چکیده
The goal of the paper is to initiate research towards a general, Blow-up Lemma type embedding statement for pseudo-random graphs with sublinear degrees. In particular, we show that if the second eigenvalue λ of a d-regular graph G on 3n vertices is at most cd/n logn, for some sufficiently small constant c> 0, then G contains a triangle factor. We also show that a fractional triangle factor already exists if λ < 0.1d/n. The latter result is seen to be best possible up to a constant factor, for various values of the degree d=d(n).
منابع مشابه
Powers of Hamilton Cycles in Pseudorandom Graphs
We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph G is (ε, p, k, l)-pseudorandom if for all disjoint X and Y ⊆ V (G) with |X| ≥ εpkn and |Y | ≥ εpln we have e(X,Y ) = (1± ε)p|X||Y |. We prove that for all β > 0 there is an ε > 0 such that an (ε, p, 1, 2)-pseudorandom graph on n vertices with minim...
متن کاملComplete subgraphs of random graphs
A classical theorem by Erdős, Kleitman and Rothschild on the structure of triangle-free graphs states that with high probability such graphs are bipartite. Our first main result refines this theorem by investigating the structure of the ’few’ triangle-free graphs which are not bipartite. We prove that with high probability these graphs are bipartite up to a few vertices. Similar results hold if...
متن کاملThe Regularity Lemma of Szemerédi for Sparse Graphs
In this note we present a new version of the well-known lemma of Szemerédi [17] concerning regular partitions of graphs. Our result deals with subgraphs of pseudo-random graphs, and hence may be used to partition sparse graphs that do no contain dense subgraphs.
متن کاملSparse pseudo-random graphs are Hamiltonian
In this article we study Hamilton cycles in sparse pseudorandom graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies
متن کاملOn randomly colouring locally sparse graphs
We consider the problem of generating a random q-colouring of a graph G = (V, E). We consider the simple Glauber Dynamics chain. We show that if for all v ∈ V the average degree of the subgraph Hv induced by the neighbours of v ∈ V is ∆ where ∆ is the maximum degree and ∆ > c1 ln n then for sufficiently large c1, this chain mixes rapidly provided q/∆ > α, where α ≈ 1.763 is the root of α = e. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 24 شماره
صفحات -
تاریخ انتشار 2004