Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice.
نویسندگان
چکیده
BACKGROUND Serum paraoxonase (PON1), an enzyme carried on HDL, inhibits LDL oxidation, and in human population studies, low PON1 activity is associated with atherosclerosis. In addition, PON1 knockout mice are more susceptible to lipoprotein oxidation and atherosclerosis. To evaluate whether PON1 protects against atherosclerosis and lipid oxidation in a dose-dependent manner, we generated and studied human PON1 transgenic mice. METHODS AND RESULTS Human PON1 transgenic mice were produced by using bacterial artificial chromosome genomic clones. The mice had 2- to 4-fold increased plasma PON1 levels, but plasma cholesterol levels were unchanged. Atherosclerotic lesions were significantly reduced in the transgenic mice when both dietary and apoE-null mouse models were used. HDL isolated from the transgenic mice also protected against LDL oxidation more effectively. CONCLUSIONS Our results indicate that PON1 protects against atherosclerosis in a dose-dependent manner and suggest that it may be a potential target for developing therapeutic agents for the treatment of cardiovascular disease.
منابع مشابه
Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice.
Paraoxonase 3 (PON3) is a member of the PON family, which includes PON1, PON2, and PON3. Recently, PON3 was shown to prevent the oxidation of low-density lipoprotein in vitro. To test the role of PON3 in atherosclerosis and related traits, 2 independent lines of human PON3 transgenic (Tg) mice on the C57BL/6J (B6) background were constructed. Human PON3 mRNA was detected in various tissues, inc...
متن کاملHuman serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation.
OBJECTIVE Human serum paraoxonase 1 (PON1) activity is inversely related to the risk of developing an atherosclerotic lesion, which contains cholesterol-loaded macrophage foam cells. To assess a possible mechanism for this relationship, we analyzed the effect of PON1 on cellular cholesterol biosynthesis. METHODS AND RESULTS Mouse peritoneal macrophages (MPMs) were harvested from PON1-deficien...
متن کاملAtherosclerotic Plaque Stability in ApoE-Null Mice Human Paraoxonase Gene Cluster Transgenic Overexpression Represses Atherogenesis
The paraoxonase (PON) gene cluster consists of the PON1, PON2, and PON3 genes, each of which can individually inhibit atherogenesis. To analyze the functions of the PON gene cluster (PC) in atherogenesis and plaque stability, human PC transgenic (Tg) mice were generated using bacterial artificial chromosome. The high-density lipoprotein from Tg mice exhibited increased paraoxonase activity. Whe...
متن کاملHuman paraoxonase gene cluster transgenic overexpression represses atherogenesis and promotes atherosclerotic plaque stability in ApoE-null mice.
The paraoxonase (PON) gene cluster consists of the PON1, PON2, and PON3 genes, each of which can individually inhibit atherogenesis. To analyze the functions of the PON gene cluster (PC) in atherogenesis and plaque stability, human PC transgenic (Tg) mice were generated using bacterial artificial chromosome. The high-density lipoprotein from Tg mice exhibited increased paraoxonase activity. Whe...
متن کاملOverexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles.
Previous studies showed that transgenic mice overexpressing either apolipoprotein AI (apoAI) or apolipoprotein AII (apoAII), the major proteins of HDL, exhibited elevated levels of HDL cholesterol, but, whereas the apoAI-transgenic mice were protected against atherosclerosis, the apoAII-transgenic mice had increased lesion development. We now examine the basis for this striking functional heter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 106 4 شماره
صفحات -
تاریخ انتشار 2002