An alginate hydrogel dura mater replacement for use with intracortical electrodes.
نویسندگان
چکیده
The collagenous dura mater requires a secure closure following implantation of neural prosthetic devices to avoid complications due to cerebrospinal fluid leakage and infections. Alginate was previously suggested for use as a dural sealant. The liquid application and controllable gelling conditions enable alginate to conform to the unique geometries of a neural prosthetic device and the surrounding dura mater to create a barrier with the external environment. In this study, we evaluated the use of alginate as a method to securely reclose a dural defect and seal around an untethered microscale neural probe in the rabbit model. After 3 days and 3 weeks, the sealing strength of alginate remained eight times greater than normal rabbit intracranial pressure and similar in both the presence and absence of a penetrating neural probe. For time points up to 3 months, there was no significant difference in dura mater fibrosis or thickness between alginate and controls. Application of alginate to a dural defect results in a watertight seal that remains intact while the dura mater reforms. These findings indicate that alginate is an effective tool for sealing around microscale neural probes and suggests broader application as a sealant for larger neural prosthetic devices.
منابع مشابه
Investigation of the material properties of alginate for the development of hydrogel repair of dura mater.
The collagenous dura mater isolates the brain from the external environment and requires a secure closure following invasive neurosurgery. This is typically accomplished by approximation of the dura mater via sutures and adhesives. In selected cases, however, large portions of dura mater require excision, necessitating a tissue replacement patch. The mild reaction conditions and long-term bioco...
متن کاملPaper-Based Electrodeposition Chip for 3D Alginate Hydrogel Formation
Hydrogel has been regarded as one significant biomaterial in biomedical and tissue engineering due to its high biocompatibility. This paper proposes a novel method to pattern calcium alginate hydrogel in a 3D way via electrodeposition process based on a piece of paper. Firstly, one insulating paper with patterned holes is placed on one indium tin oxide (ITO) glass surface, which is put below an...
متن کاملDura mater mitral and tricuspid bioprostheses: 30 years of follow-up.
PURPOSE The dura mater bioprosthesis was developed in the Department of Cardiopneumology of the Hospital das Clínicas of the University of São Paulo Medical School in 1971. Here, we present the clinical results of the dura mater bioprosthesis over 30 years of follow-up. METHODS We studied 70 consecutive patients who underwent mitral or tricuspid valve replacement with a dura mater bioprosthes...
متن کاملDielectric properties of alginate beads and bound water relaxation studied by electrorotation.
The electrical and dielectric properties of Ba2+ and Ca2+ cross-linked alginate hydrogel beads were studied by means of single-particle electrorotation. The use of microstructured electrodes allowed the measurements to be performed over a wide range of medium conductivity from about 5 mS/m to 1 S/m. Within a conductivity range, the beads exhibited measurable electrorotation response at frequenc...
متن کاملHigh-density multielectrode array with independently maneuverable electrodes and silicone oil fluid isolation system for chronic recording from macaque monkey.
Chronic multielectrode recording has become a widely used technique in the past twenty years, and there are multiple standardized methods. As for recording with high-density array, the most common method in macaque monkeys is to use a subdural array with fixed electrodes. In this study, we utilized the electrode array with independently maneuverable electrodes arranged in high-density, which wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part B, Applied biomaterials
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2010