A Fast Motion Parameters Estimation Method Based on Cross-Correlation of Adjacent Echoes for Wideband LFM Radars

نویسندگان

  • Yixiong Zhang
  • Yunjian Zhang
  • Sheng Jin
چکیده

In wideband radar systems, the performance of motion parameters estimation can significantly affect the performance of object detection and the quality of inverse synthetic aperture radar (ISAR) imaging. Although the traditional motion parameters estimation methods can reduce the range migration (RM) and Doppler frequency migration (DFM) effects in ISAR imaging, the computational complexity is high. In this paper, we propose a new fast non-searching motion parameters estimation method based on cross-correlation of adjacent echoes (CCAE) for wideband LFM signals. A cross-correlation operation is carried out for two adjacent echo signals, then the motion parameters can be calculated by estimating the frequency of the correlation result. The proposed CCAE method can be applied directly to the stretching system, which is commonly adopted in wideband radar systems. Simulational results demonstrate that the new method can achieve better estimation performances, with much lower computational cost, compared with existing methods. The experimental results on real radar data sets are also evaluated to verify the effectiveness and superiority of the proposed method compared to the state-of-the-art existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, ...

متن کامل

Application of Model-Based Estimation to Time-Delay Estimation of Ultrasonic Testing Signals

Time-Delay-Estimation (TDE) has been a topic of interest in many applications in the past few decades. The emphasis of this work is on the application of model-based estimation (MBE) for TDE of ultrasonic signals used in ultrasonic thickness gaging. Ultrasonic thickness gaging is based on precise measurement of the time difference between successive echoes which reflect back from the back wall ...

متن کامل

Bird Migration Echoes Observed by Polarimetric Radar

Weather surveillance radars observe clear-air radar echoes (CAE); aerial biota and irregularities in atmospheric refractive index caused the echoes. Using weak returns of atmospheric CAE, the radars have been applied to wind findings in a short radar range in a fair weather, in particular S-band radars. Long wavelength radars perform good to observe air motion, because a detectable turbulent sc...

متن کامل

Adaptive search area for fast motion estimation

In this paper a new method for determining the search area for motion estimation algorithm based on block matching is suggested. In the proposed method the search area is adaptively found for each block of a frame. This search area is similar to that of the full search (FS) algorithm but smaller for most blocks of a frame. Therefore, the proposed algorithm is analogous to FS in terms of reg...

متن کامل

Sparse representation-based DOA estimation of coherent wideband LFM signals in FRFT domain

In this paper, the method of direction-of-arrival (DOA) estimation for wideband signals based on sparse representation of FRFT domain is proposed by using the excellent convergence of FRFT to LFM signals. This method focuses the wideband signal to the reference frequency using FRFT, establishes the DOA estimation model and the array manifold matrix in the FRFT domain, and reconstructs the spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017