The epitope regions of H1-subtype influenza A, with application to vaccine efficacy
نویسندگان
چکیده
The recent emergence of H1N1 (swine flu) illustrates the ability of the influenza virus to create antigens new to the human immune system, even within a given hemagglutinin and neuraminidase subtype. This new H1N1 strain is sufficiently distinct, for example, from the A/Brisbane/59/2007 (H1N1)-like virus strain of influenza in the 2008/09 Northern hemisphere vaccine that protection is not expected to be substantial. The human immune system responds primarily to the five epitope regions of the hemagglutinin protein. By determining the fraction of amino acids that differ between a vaccine strain and a viral challenge strain in the dominant epitope regions, a measure of antigenic distance that correlates with epidemiological studies of H3 influenza A vaccine efficacy in humans with R(2) = 0.81 is derived. This measure of antigenic distance is called p(epitope). The relation between vaccine efficacy and p(epitope) is given by E = 0.47 - 2.47 x p(epitope). We here identify the epitope regions of H1 hemagglutinin, so that vaccine efficacy may be reliably estimated for H1N1 influenza A.
منابع مشابه
The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2
Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At p...
متن کاملDesigning of A Multi-epitope Recombinant Protein, Consisting of Several Conserved Epitopes from Hemagglutinin Protein of the H1N1 and H5N1 Strains of Influenza Virus by Immunoinformatics Approaches
Introduction: According to marked advances in bioinformatics studies, development of influenza vaccines has been greatly modified in many studies. In this study, we have designed a multi-epitope recombinant protein, consisting of several conserved epitopes from Hemagglutinin protein of the H1N1 and H5N1 strains of Influenza virus by immunoinformatics approaches. Materials and Methods: The regis...
متن کاملT‐cell epitope content comparison (EpiCC) of swine H1 influenza A virus hemagglutinin
BACKGROUND Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T-cell epitope cross-conservation may play an important role in cross-strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no s...
متن کاملInsight into Highly Conserved H1 Subtype-Specific Epitopes in Influenza Virus Hemagglutinin
Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA) that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutrali...
متن کاملConserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody
Circulating influenza viruses evade neutralization in their human hosts by acquiring escape mutations at epitopes of prevalent antibodies. A goal for next-generation influenza vaccines is to reduce escape likelihood by selectively eliciting antibodies recognizing conserved surfaces on the viral hemagglutinin (HA). The receptor-binding site (RBS) on the HA "head" and a region near the fusion pep...
متن کامل