Transcriptome Analysis of Adaptive Heat Shock Response of Streptococcus thermophilus
نویسندگان
چکیده
Streptococcus thermophilus, a gram-positive facultative anaerobe, is one of the most important lactic acid bacteria widely used in the dairy fermentation industry. In this study, we have analyzed the global transcriptional profiling of S. thermophilus upon temperature change. During a temperature shift from 42°C to 50°C, it is found that 196 (10.4%) genes show differential expression with 102 up-regulated and 94 down-regulated at 50°C. In particular, 1) Heat shock genes, such as DnaK, GroESL and clpL, are identified to be elevated at 50°C; 2) Transcriptional regulators, such as HrcA, CtsR, Fur, MarR and MerR family, are differentially expressed, indicating the complex molecular mechanisms of S. thermophilus adapting to heat shock; 3) Genes associated with signal transduction, cell wall genes, iron homeostasis, ABC transporters and restriction-modification system were induced; 4) A large number of the differentially expressed genes are hypothetical genes of unknown function, indicating that much remains to be investigated about the heat shock response of S. thermophilus. Experimental investigation of selected heat shock gene ClpL shows that it plays an important role in the physiology of S. thermophilus at high temperature and meanwhile we confirmed ClpL as a member of the CtsR regulon. Overall, this study has contributed to the underlying adaptive molecular mechanisms of S. thermophilus upon temperature change and provides a basis for future in-depth functional studies.
منابع مشابه
Impaired temperature stress response of a Streptococcus thermophilus deoD mutant.
An insertional deoD mutant of Streptococcus thermophilus strain SFi39 had a reduced growth rate at 20 degrees C and an enhanced survival capacity to heat shock compared to the wild type, indicating that the deoD product is involved in temperature shock adaptation. We report evidence that ppGpp is implicated in this dual response.
متن کاملExpression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock
BACKGROUND Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. RESULTS We show the occurrence of molecular relationships between the mechanisms of cold and heat adaptations in Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermen...
متن کاملApplication of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria.
Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lac...
متن کاملIncrease of stress resistance in Lactococcus lactis via a novel food-grade vector expressing a shsp gene from Streptococcus thermophilus
The effects of the expression of a small heat shock protein (shsp) gene from Streptococcus thermophilus on stress resistance in Lactococcus lactis under different environmental stresses were investigated in this study. pMG36e-shsp, an expression vector, was first constructed by inserting a shsp open reading frame (ORF) cloned from S. thermophilus strain St-QC into pMG36e. Then, a food-grade exp...
متن کاملIdentification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress.
To better understand the defense mechanism of Streptococcus thermophilus against superoxide stress, molecular analysis of 10 menadione-sensitive mutants, obtained by insertional mutagenesis, was undertaken. This analysis allowed the identification of 10 genes that, with respect to their putative functions, were classified into five categories: (i) those involved in cell wall metabolism, (ii) th...
متن کامل