Ladder Sandpiles
نویسندگان
چکیده
We study Abelian sandpiles on graphs of the form G×I, where G is an arbitrary finite connected graph, and I ⊂ Z is a finite interval. We show that for any fixed G with at least two vertices, the stationary measures μI = μG×I have two extremal weak limit points as I ↑ Z. The extremal limits are the only ergodic measures of maximum entropy on the set of infinite recurrent configurations. We show that under any of the limiting measures, one can add finitely many grains in such a way that almost surely all sites topple infinitely often. We also show that the extremal limiting measures admit a Markovian coding.
منابع مشابه
The approach to criticality in sandpiles
A popular theory of self-organized criticality relates the critical behavior of driven dissipative systems to that of systems with conservation. In particular, this theory predicts that the stationary density of the abelian sandpile model should be equal to the threshold density of the corresponding fixed-energy sandpile. This “density conjecture” has been proved for the underlying graph Z. We ...
متن کاملApproach to criticality in sandpiles.
A popular theory of self-organized criticality predicts that the stationary density of the Abelian sandpile model equals the threshold density of the corresponding fixed-energy sandpile. We recently announced that this "density conjecture" is false when the underlying graph is any of Z2, the complete graph K(n), the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. In this...
متن کاملBehavior of coupled automata.
We study the nature of statistical correlations that develop between systems of interacting self-organized critical automata (sandpiles). Numerical and analytical findings are presented describing the emergence of "synchronization" between sandpiles and the dependency of this synchronization on factors such as variations in coupling strength, toppling rule probabilities, symmetric versus asymme...
متن کاملOn Computing Fixed Points for Generalized Sandpiles
We prove fixed points results for sandpiles starting with arbitrary initial conditions. We give an effective algorithm for computing such fixed points, and we refine it in the particular case of SPM.
متن کاملAbsorbing-state phase transitions in fixed-energy sandpiles
We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta(c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interf...
متن کامل