Highly Robust Estimation of Dispersion Matrices
نویسندگان
چکیده
In this paper, we propose a new componentwise estimator of a dispersion matrix, based on a highly robust estimator of scale. The key idea is the elimination of a location estimator in the dispersion estimation procedure. The robustness properties are studied by means of the influence function and the breakdown point. Further characteristics such as asymptotic variance and efficiency are also analyzed. It is shown in the componentwise approach, for multivariate Gaussian distributions, that covariance matrix estimation is more difficult than correlation matrix estimation. The reason is that the asymptotic variance of the covariance estimator increases with increasing dependence, whereas it decreases with increasing dependence for correlation estimators. We also prove that the asymptotic variance of dispersion estimators for multivariate Gaussian distributions is proportional to the asymptotic variance of the underlying scale estimator. The proportionality value depends only on the underlying dependence. Therefore, the highly robust dispersion estimator is among the best robust choice at the present time in the componentwise approach, because it is location-free and combines small variability and robustness properties such as high breakdown point and bounded influence function. A simulation study is carried out in order to assess the behavior of the new estimator. First, a comparison with another robust componentwise estimator based on the median absolute deviation scale estimator is performed. The highly robust properties of the new estimator are confirmed. A second comparison with global estimators such as the method of moment estimator, the minimum volume ellipsoid, and the minimum covariance determinant estimator is also performed, with two types of outliers. In this case, the highly robust dispersion matrix estimator turns out to be an interesting compromise between the high efficiency of the method of moment estimator in noncontaminated situations and the highly robust properties of the minimum volume ellipsoid and minimum covariance determinant estimators in contaminated situations. 2001 Academic Press AMS subject classifications: 62H12; 62G35.
منابع مشابه
A Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملRobust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance
This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...
متن کاملApplication of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum
Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...
متن کاملA Robust Dispersion Control Chart Based on M-estimate
Process control charts are proven techniques for improving quality. Specifying the control limits is the most important step in designing a control chart. The presence of outliers may extremely affect the estimates of parameters using classical methods. Robust estimators which are not affected by outliers or the small departures from the model assumptions are applied in this paper to specify th...
متن کاملAsymptotic Distribution of Wishart Matrix for Block-wise Dispersion of Population Eigenvalues
This paper deals with the asymptotic distribution of Wishart matrix and its application to the estimation of the population matrix parameter when the population eigenvalues are block-wise infinitely dispersed. We show that the appropriately normalized eigenvectors and eigenvalues asymptotically generate two Wishart matrices and one normally distributed random matrix, which are mutually independ...
متن کامل