Thermodynamics of densification of powder compact

نویسندگان

  • Yoshihiro Hirata
  • Akihiro Hara
  • Ilhan A. Aksay
چکیده

This paper established a necessary condition for the sintering of powder compacts by examining the total free energy balance in terms of the particle size, neck size and contact number. The thermodynamic analysis of the proposed model clarifies the relation of shrinkage (q) of powder compact-contact angle (f)-relative density at a given dihedral angle (fe) of a grain boundary. Faster densification proceeds in the region with a larger coordination number (n) of particles at a small q value. A large shrinkage is needed to eliminate the large pores formed in the structure of small n value. Full density can be achieved in the range of 1178 < fe < fc, where fc is the critical dihedral angle allowing the shrinkage required for full densification. The derived concepts are effective to interpret the densification of hierarchical particle clusters. The relative density of ceria powder compact approached nonlinearly unity with decreasing ratio of pore size (r(P)) to grain size (r) and this tendency was well expressed by the present densification model. The influence of grain growth on the densification of powder compact and size of large pore isolated in a dense matrix are also quantitatively discussed. # 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INITIAL SINTERING KINETICS OF LITHIUM META TITANATE AT CONSTANT RATES OF HEATING

In order to evaluate the sintering behavior of lithium meta titanate (Li2TiO3) powder, the shrinkage of powder compact was measured under constant rates of heating. Densification curves for Li2TiO3 have been constructed with the help of shrinkage powder measured at different heating rates. The activation energy at the initial stage of sintering was determined by analyzing the densification curv...

متن کامل

Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaw...

متن کامل

Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS) of Nickel

Current-activated tip-based sintering (CATS) is a novel process where spark plasma sintering conditions are applied through an electrically conducting tip on a locally controlled area on a green powder compact/bed. The localization of electric current in CATS allows for unique temporal and spatial current and temperature distributions within the tip and powder compact. In this paper, special ex...

متن کامل

EFFECT OF SUPERSOLIDUS LIQUID PHASE SINTERING ON THE MICROSTRUCTURE AND DENSIFICATION OF THE Al-Cu-Mg PREALLOYED POWDER

Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sinte...

متن کامل

Gravitational Effects on Distortion in Sintering

During sintering a powder compact gains strength through low-temperature interparticle bonding, usually induced by solid-state surface diffusion, followed by further strength contributions from high-temperature densification. In cases where a liquid phase forms, sintering densification is accelerated and shape retention is sustained while open pores remain and contribute capillary forces. Unfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009